References and Notes
For examples of atropisomerism and
discussions on the conformational properties of non-biaryl systems,
see:
<A NAME="RD15909ST-1A">1a</A>
Clayden J.
Turner H.
Helliwell M.
Moir E.
J. Org. Chem.
2008,
73:
4415
<A NAME="RD15909ST-1B">1b</A>
Adler T.
Bonjoch J.
Clayden J.
Font-Bardía M.
Pickworth M.
Solans X.
Solé D.
Vallverdú L.
Org. Biomol. Chem.
2005,
3:
3173
<A NAME="RD15909ST-1C">1c</A>
Clayden J.
Worrall CP.
Moran W.
Helliwell M.
Angew. Chem. Int. Ed.
2008,
47:
3234
<A NAME="RD15909ST-1D">1d</A>
Betson MS.
Clayden J.
Worrall CP.
Peace S.
Angew.
Chem. Int. Ed.
2006,
45:
5803
<A NAME="RD15909ST-1E">1e</A>
Clayden J.
Fletcher SP.
McDouall
JJW.
Rowbottom SJM.
J.
Am. Chem. Soc.
2009,
131:
5331
<A NAME="RD15909ST-1F">1f</A> For an overview of this
area, see:
Clayden J.
Chem. Commun.
2004,
127
For studies of conformational interconversions
in diarylsulfides and sulfones, see:
<A NAME="RD15909ST-2A">2a</A>
Kessler H.
Rieker A.
Rundel W.
Chem.
Commun.
1968,
475
<A NAME="RD15909ST-2B">2b</A>
Lam WY.
Martin JC.
J. Org. Chem.
1981,
46:
4458
<A NAME="RD15909ST-2C">2c</A>
Grilli S.
Lunazzi L.
Mazzanti A.
J.
Org. Chem.
2001,
4444
<A NAME="RD15909ST-2D">2d</A>
Lunazzi L.
Mazzanti A.
Minzoni M.
Tetrahedron
2005,
61:
6782
<A NAME="RD15909ST-2E">2e</A>
Clayden J., Senior J.,
Helliwell M.; Angew. Chem. Int. Ed.;
in press
<A NAME="RD15909ST-3">3</A>
Kwong FY.
Buchwald SL.
Org. Lett.
2002,
4:
3517
Other recent methods for C-S
bond formation in less hindered systems have been described, see:
<A NAME="RD15909ST-4A">4a</A>
Fernandez-Rodriguez M.-A.
Shen O.
Hartwig JF.
J. Am. Chem. Soc.
2006,
128:
2180
<A NAME="RD15909ST-4B">4b</A>
Correa A.
Carril M.
Bolm C.
Angew.
Chem. Int. Ed.
2008,
47:
2880
<A NAME="RD15909ST-4C">4c</A>
Zhang H.
Cao W.
Ma D.
Synth.
Commun.
2007,
37:
25
<A NAME="RD15909ST-4D">4d</A>
Xu HJ.
Zhao XY.
Deng J.
Fu Y.
Feng Y.-S.
Tetrahedron
Lett.
2009,
50:
434
<A NAME="RD15909ST-4E">4e</A>
Lee J.-Y.
Lee PH.
J. Org. Chem.
2008,
73:
7413
<A NAME="RD15909ST-4F">4f</A> For a review, see:
Kondo T.
Mitsudo T.
Chem. Rev.
2000,
100:
3205
For further representative examples, see:
<A NAME="RD15909ST-4G">4g</A>
Palomo C.
Oiarbide M.
López R.
Gómez-Bengoa E.
Tetrahedron Lett.
2000,
41:
1283
<A NAME="RD15909ST-4H">4h</A>
Herradura PS.
Pendola KA.
Guy RK.
Org. Lett.
2000,
2:
2019
<A NAME="RD15909ST-4I">4i</A>
McWilliams JC.
Fleitz FJ.
Zheng N.
Armstrong JD.
Org.
Synth.
2002,
79:
43
<A NAME="RD15909ST-4J">4j</A>
Li GY.
Angew.
Chem. Int. Ed.
2001,
40:
1513
<A NAME="RD15909ST-4K">4k</A>
Li GY.
J.
Org. Chem.
2002,
67:
3643
<A NAME="RD15909ST-4L">4l</A>
Schopfer U.
Schlapbach A.
Tetrahedron
2001,
57:
3069
<A NAME="RD15909ST-4M">4m</A>
Bates CG.
Gujadhur
RK.
Venkataraman D.
Org. Lett.
2002,
4:
2803
<A NAME="RD15909ST-4N">4n</A> Only one previous report,
a coupling method employing HMPA as solvent, addresses a 2,2′,6,6′-tetraalkyl
diarylsulfide, see:
Fujihara H.
Chiu J.
Furukawa N.
J. Am.
Chem. Soc.
1988,
110:
1280
For recent reviews of directed lithiation,
see:
<A NAME="RD15909ST-5A">5a</A>
Clayden J.
Organolithiums: Selectivity for Synthesis
Pergamon;
Oxford:
2002.
<A NAME="RD15909ST-5B">5b</A>
Clayden J.
Directed Metallation of Aromatic Compounds. In Chemistry of Organolithium Compounds
Vol.
1:
Rappoport Z.
Marek I.
Wiley;
Chichester:
2004.
p.495
<A NAME="RD15909ST-5C">5c</A>
Whisler MC.
MacNeil S.
Snieckus V.
Beak P.
Angew. Chem.
Int. Ed.
2004,
43:
2206
<A NAME="RD15909ST-6">6</A>
Clayden J.
Cooney JJA.
Julia M.
J. Chem. Soc., Perkin Trans. 1
1995,
7
<A NAME="RD15909ST-7">7</A>
Iwao M.
Iihama T.
Mahalanabis KK.
Perrier H.
Snieckus V.
J.
Org. Chem.
1989,
54:
24
<A NAME="RD15909ST-8">8</A>
Krizan TD.
Martin JC.
J. Am. Chem. Soc.
1983,
105:
6155
<A NAME="RD15909ST-9">9</A>
Betson MS.
Clayden J.
Synlett
2006,
745
<A NAME="RD15909ST-10">10</A>
Pinchart A.
Dallaire C.
Van Bierbeek A.
Gingras M.
Tetrahedron Lett.
1999,
5479
<A NAME="RD15909ST-11">11</A>
Kimura S.
Bill E.
Bothe E.
Weyhermller T.
Wieghardt K.
J. Am.
Chem. Soc.
2001,
123:
6025
<A NAME="RD15909ST-12">12</A>
Stavber S.
Kralj P.
Zupan M.
Synthesis
2002,
1513
<A NAME="RD15909ST-13">13</A> For examples of selectivity of I
over Br in related reactions, see:
Deng W.
Zou Y.
Wang Y.-F.
Liu L.
Guo Q.-X.
Synlett
2004,
1254
<A NAME="RD15909ST-14">14</A>
Copper-Promoted Coupling; Typical
Procedure for (2,4-Di-tert-butyl-6-bromophenyl)-(2,4-di-tert-butyl-6-methylphenyl)
sulfane
(20b)
Thiophenol 18a (574 mg), copper(I) iodide (462 mg)
and potassium carbonate (560 mg) were charged to a flask fitted with
a reflux condenser, which was evacuated/back-filled with
nitrogen (×3). A solution of iodide 19c (800
mg) and ethylene glycol (0.23 mL) in tert-amyl
alcohol (6 mL) was added via syringe and the reaction mixture was
heated to reflux for 24 h. The reaction mixture was allowed to cool
to r.t., diluted with ethyl acetate (40 mL) and filtered through
a glass sinter. The filtrate was washed with water (3 × 50
mL) and brine (50 mL), dried over MgSO4 and the solvents
were removed under reduced pressure. The crude product was purified
by flash chromatography (petroleum ether) to yield the title compound
as a white solid that was recrystallised from acetone (1.27 g, 76%);
mp 125-129 ˚C(acetone); R
f
= 0.69 (petroleum ether); ¹H
NMR (400 MHz, CDCl3): δ = 7.45 (d, J = 2 Hz, 1 H, ArH),
7.36 (d, J = 2 Hz, 1 H,
ArH), 7.33 (d, J = 2 Hz, 1 H,
ArH), 6.93 (d, J = 2 Hz, 1 H,
ArH), 1.75 (s, 3 H, ArCH
3
), 1.65 (s, 9 H, CMe3),
1.64 (s, 9 H, CMe3), 1.30 (s, 9 H,
CMe3), 1.28 (s, 9 H, CMe3); ¹³C
NMR (100 MHz, CDCl3): δ = 150.8, 150.2,
149.0, 148.5, 139.0, 133.1, 131.8, 129.7, 127.0, 126.1, 123.6, 122.5,
38.3, 37.5, 34.7, 34.5, 31.3, 31.3, 31.1, 30.9, 23.0; MS (CI): m/z (%) = 502
(40) [79Br M]+,
504 (40) [8¹Br M]+,
503 (50) [79BrM + H]+,
505 (50) [8¹BrM + H]+;
HRMS: m/z calcd
for C29H43BrS: 502.2263; found: 502.2264.