RSS-Feed abonnieren
DOI: 10.1055/s-0029-1217991
Anionic ortho-Fries Rearrangement, a Facile Route to Arenol-Based Mannich Bases
Publikationsverlauf
Publikationsdatum:
24. September 2009 (online)

Abstract
Phenol and 1-naphthol-based carbamates undergo the anionic ortho-Fries rearrangement to their corresponding amides. Bulky substitution at position 8 of 1-naphthol-based carbamates makes the rearrangement an exclusive reaction, even at -90 ˚C, under a variety of conditions. The amides can be efficiently reduced to the corresponding Mannich bases. A novel route to 7-[(dialkylamino)methyl]-8-hydroxy-1-naphthaldehydes is presented.
Key words
rearrangements - reductions - Mannich bases - carbamates - ortho-Fries rearrangement
- 1a
Smith M.March J. Advanced Organic Chemistry: Reactions, Mechanisms and Structure 6th ed.: Wiley Interscience; Chichester: 2001.Reference Ris Wihthout Link - 1b
Van der Water RW.Pettus RR. Tetrahedron 2002, 58: 5367Reference Ris Wihthout Link - 1c
Ooi T.Keiji K. Angew. Chem. Int. Ed. Engl. 2007, 46: 4222Reference Ris Wihthout Link - 2
Trost B.Flemming I. Comprehensive Organic Synthesis Pergamon Press; Oxford: 1991.Reference Ris Wihthout Link - 3
Risch N.Arend M.Westermann B. Angew. Chem. Int. Ed. 1998, 37: 1044 - 4
Specamp WN.Moolenaar MJ. Tetrahedron 2000, 56: 3817 - 5a
Pilli RA.Russowsky D. J. Chem. Soc., Chem. Commun. 1987, 1053Reference Ris Wihthout Link - 5b
Pilli RA.Dias LC.Maldaner AO. J. Org. Chem. 1995, 60: 717Reference Ris Wihthout Link - 5c
Pilli RA.Russowsky D. J. Org. Chem. 1996, 61: 3187Reference Ris Wihthout Link - 6
Xu L.-W.Xia C.-G.Li L. J. Org. Chem. 2004, 69: 8482 - 7a
Collins DJ.Hughes TC.Johnson WM. Aust. J. Chem. 2000, 53: 137Reference Ris Wihthout Link - 7b
Tian JZ.Zhang JQ.Shen X.Zou HX. J. Organomet. Chem. 1999, 584: 240Reference Ris Wihthout Link - 7c
Velásquez AM.Torres LA.Diaz G.Ramirez A.Hernádez R.Santillán H.Martinez L.Martinez I.Diaz-Barriga S.Abrego V.Balboa MA.Camacho B.López-Castañares R.Duenãs-Gonzáles A.Cabrera G.Angeles E. ARKIVOC 2006, (ii): 150Reference Ris Wihthout Link - 7d
Hon Y.-S.Chou Y.-Y.Wu I.-C. Synth. Commun. 2004, 34: 2253Reference Ris Wihthout Link - 8a
Pradham JK.Mukherjee C.Kmila S.De A. Tetrahedron 2004, 60: 5215Reference Ris Wihthout Link - 8b
Singh KJ.Collum DB. J. Am. Chem. Soc. 2006, 128: 13753Reference Ris Wihthout Link - 8c
Kauch M.Snieckus V.Hoppe D. J. Org. Chem. 2005, 70: 7149Reference Ris Wihthout Link - For synthetic applications of the anionic ortho-Fries rearrangement and other O → C carbamoyl-transfer reactions, see:
- 9a
Kalinin AV.Miah MAJ.Chattopadhyay S.Tsukazaki M.Wicki M.Nguen T.Coelho AL.Kerr M.Snieckus V. Synlett 1997, 839Reference Ris Wihthout Link - 9b
Mohri S.-I.Snieckus V. J. Org. Chem. 1997, 62: 7072Reference Ris Wihthout Link - 9c
Kalinin AV.da Silva AJM.Lopes CC.Lopes RSC.Snieckus V. Tetrahedron Lett. 1998, 39: 4995Reference Ris Wihthout Link - 9d
Kalinin AV.Snieckus V. Tetrahedron Lett. 1998, 39: 4999Reference Ris Wihthout Link - 9e
Chauder BA.Kalinin AV.Taylor NJ.Snieckus V. Angew. Chem. Int. Ed. 1999, 38: 1435Reference Ris Wihthout Link - 9f
Reed MA.Chang MT.Snieckus V. Org. Lett. 2004, 6: 2297Reference Ris Wihthout Link - 10
Focken T.Hopf H.Snieckus V.Dix I.Jones PG. Eur. J. Org. Chem. 2001, 2221 - 11a
Hamada S.Motoyama Y.Nagashima H. Tetrahedron Lett. 2006, 47: 6173Reference Ris Wihthout Link - 11b
Igarashi M.Fuchikami T. Tetrahedron Lett. 2001, 42: 1945Reference Ris Wihthout Link - 11c
Zhu H.-J.Lu K.-T.Sum G.-R.He J.-B.Li H.-Q.Pittman CU. New J. Chem. 2003, 27: 409Reference Ris Wihthout Link - 11d
Fisher GB.Fuller JC.Harrison J.Alvarez SG.Burkhardt ER.Goralski CT.Singaram B. J. Org. Chem. 1994, 59: 6378Reference Ris Wihthout Link - 11e
Cha JS.Brown HC. Org. Prep. Proced. Int. 1994, 26: 459Reference Ris Wihthout Link - 12
Lustig E.Benson WR.Duy N. J. Org. Chem. 1967, 32: 851 - 14
Cohen T.Moran RM.Sowinski G. J. Org. Chem. 1961, 26: 1 - 15a
Kawski P.Kochel A.Perevozkina MG.Filarowski A. J. Mol. Struct. 2006, 790: 65Reference Ris Wihthout Link - 15b
Sigma-Aldrich cat. no. 644234.
Reference Ris Wihthout Link - 16
Saitama HW. J. Am. Chem. Soc. 2007, 129: 15102 - 18
Katritzky AR.Singh SK.Cai C.Bobrov S. J. Org. Chem. 2006, 71: 3364 - 19
Milne GWA. Drugs: Synonyms and Properties Ashgate; Brookfield VT: 2000.Reference Ris Wihthout Link - 20
Hasegawa I.Sakka S. Bull. Chem. Soc. Jpn. 1988, 61: 4087 - 22
Pochini A.Puglia G.Ungaro R. Synthesis 1983, 906 - 23
Boehme H.Hartke K. Chem. Ber. 1963, 96: 604 - 24
Tanaka Y.Hasui T.Suginome M. Org. Lett. 2007, 9: 4407 - 25
Dilman AD.Arkhipov DE.Belyakov PA.Struchkova MI.Tartakovsky VA. Russ. Chem. Bull. 2006, 55: 517 - 26
Matsumoto K.Joho K.Mimori S.Iida H.Hamana H.Kakehi A. Heterocycles 2008, 76: 1061 - 27
Blade-Font A.De Mas Rocabayera T. J. Chem. Soc., Perkin Trans. 1 1982, 841 - 28
Moehrle H.Troester K. Arch. Pharm. (Weinheim, Ger.) 1982, 315: 397 - For the synthesis of compound 5, see:
- 29a
Call G.Morey J.Costa A.Saá JM. J. Org. Chem. 1988, 53: 5345Reference Ris Wihthout Link - 29b
Buisson J.-P.Roner R. J. Heterocycl. Chem. 1988, 25: 539Reference Ris Wihthout Link - 29c
Ellinger CA. Org. Prep. Proced. Int. 1985, 17: 419Reference Ris Wihthout Link - The anionic ortho-Fries rearrangement usually takes place upon warming the lithiation reaction to room temperature. See:
- 30a
Kauch M.Hoppe D. Can. J. Chem. 2001, 79: 1736Reference Ris Wihthout Link - 30b
Wang W.Snieckus V. J. Org. Chem. 1992, 57: 424Reference Ris Wihthout Link - 30c
Van Doorn AR.Bos M.Harkema S.Van Eerden J.Verboom W.Reinhoudt DN. J. Org. Chem. 1991, 56: 2371Reference Ris Wihthout Link - 30d The only other known example
of this rearrangement, occurring under similar conditions, is that
of the o-migration of the tetrazole from its aryloxy precursor.
See:
Dankwardt JW. J. Org. Chem. 1988, 63: 3753Reference Ris Wihthout Link - 31 ‘Fast’ reacting
electrophiles such as TMSCl and aryl aldehydes, when present, did
not quench the lithiated species. See:
Schnürch M.Spina M.Khan AF.Mihovilovic MD.Stanetty P. Chem. Soc. Rev. 2007, 36: 1046Reference Ris Wihthout Link - 32a
Pittelkow M.Boas V.Jass M.Jensen KJ.Christensen JB. Org. Biomol. Chem. 2005, 3: 508Reference Ris Wihthout Link - 32b
Karacar A.Freytag M.Thönnessen H.Jones PG.Barts R.Schmutzler R. J. Organomet. Chem. 2002, 68: 643Reference Ris Wihthout Link - 32c
Kirby AJ.Percy AC. Tetrahedron 2002, 58: 6901Reference Ris Wihthout Link - 32d
Balasubramaniyan V. Chem. Rev. 1966, 66: 567Reference Ris Wihthout Link - 35
Kuwano R.Takahashi M.Ito Y. Tetrahedron Lett. 1998, 39: 1017 - 36a
Charette AB.Grenon M. Tetrahedron Lett. 2000, 41: 1677Reference Ris Wihthout Link - 36b
Charette AB.Chua P. Tetrahedron Lett. 1998, 39: 245Reference Ris Wihthout Link - 36c
Charette AB.Chua P. Tetrahedron Lett. 1997, 38: 8499Reference Ris Wihthout Link - 37
Godjoian B.Singaram B. Tetrahedron Lett. 1997, 38: 1717
References and Notes
Conversion of
Carbamates to Amides (Table 1); General Procedure: n-BuLi (3.8 mL, 1.6 M sol in hexane)
was added dropwise to a stirred solution of diisopropylamine (0.607
g, 6 mmol), in anhyd THF (6 mL) at -78 ˚C under
a nitrogen atmosphere. After 20 min at -78 ˚C
a solution of the appropriate carbamate (5 mmol) in anhyd THF (6
mL) was added. The reaction mixture was stirred for 30 min at -78 ˚C, allowed
to warm to r.t., stirred for a further 6 h and then quenched with
sat. NH4Cl (5 mL). The reaction mixture was extracted
with Et2O (3 × 20 mL) and the combined organic extracts
were washed with brine (25 mL) and then dried (Na2SO4).
The solvent was removed in vacuo and the crude product was purified
by silica flash column chromatography (hexane-Et2O,
6:4) to give the corresponding amide. The structures of the products
were confirmed by comparison of their mp, TLC, IR or ¹H
NMR data with authentic samples obtained commercially or prepared
by literature methods.
N
,
N
-Diethyl-1-hydroxy-2-naphthamide (Table 1, entry 8):
Obtained as colourless microcrystals (EtOAc-hexane); yield:
0.87 g (72%); mp 50-52 ˚C; R
f
0.48
(hexane-Et2O, 3:7). IR (KBr): 3443, 3067, 2982,
2934, 1635 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 1.29 (t, J = 7.2 Hz, 6 H), 3.54 (q,
J = 7.2 Hz, 4 H),
7.25-7.33 (m, 2 H), 7.45-7.58 (m, 2 H), 7.78 (d, J = 6.8 Hz, 1 H), 8.41 (d, J = 7.6 Hz, 1 H), 11.41 (br s,
1 H). ¹³C NMR (100 MHz, CDCl3): δ = 13.6,
42.4, 110.6, 117.7, 123.7, 123.8, 125.7, 125.8, 127.4, 128.4, 135.6, 157.8,
172.8. ES-MS: m/z = 244.66 [M + 1]+.
Anal. Calcd for C15H17NO2: C, 74.05;
H, 7.04; N, 5.76. Found: C, 73.78; H, 7.20; N, 5.69.
Sigma-Aldrich cat. no. 642932.
21
Conversion of
Amides to Mannich Bases (Table 2); General Procedure: A solution
of appropriate amide (1.25 mmol) in anhyd THF (50 mL) was added
to a stirred solution of LiAlH4 (0.244 g, 6.25 mmol)
in anhyd THF (25 mL) at 0 ˚C. The reaction mixture was
allowed to warm to r.t., stirred for 3 h and then treated successively
with H2O (10 mL), 15% aq NaOH (10 mL) and H2O
(40 mL). The reaction mixture was extracted with Et2O
(3 × 30 mL) and the combined organic extracts were dried
(Na2SO4), filtered and concentrated in vacuo.
The crude product was purified by silica flash column chromatography
eluting with Et2O to give the corresponding Mannich base.
The structure of the products was confirmed by comparison of their
mp, TLC,
IR or ¹H NMR data with authentic
samples obtained commercially or prepared by literature methods.
2-[(Diethylamino)methyl]-1-naphthol
(Table 2, entry 8): Obtained as a dark red oil; yield: 0.18
g (65%), mp 149-150 ˚C (as HCl salt); R
f
0.14
(hexane-Et2O, 3:7). IR (KBr): 3330 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 1.16 (t, J = 7.2 Hz, 6 H), 2.69 (q, J = 7.2 Hz, 4 H), 3.92 (s, 2
H), 7.07 (d, J = 8.0 Hz, 1 H),
7.28 (d, J = 8.0 Hz, 1 H), 7.41-7.49
(m, 2 H), 7.74 (m, 1 H), 8.22-8.28 (m, 1 H), 11.15 (br
s, 1 H). ¹³C NMR (100 MHz, CDCl3): δ = 11.3
(2 × C), 46.5 (2 × C), 57.2, 114.4, 118.0, 122.0,
124.7, 125.0, 125.8, 126.4, 127.3, 133.8, 154.0. ES-MS: m/z = 230.24 [M + 1]+.
Anal. Calcd for C15H19NO: C, 78.56; H, 8.35;
N, 6.11. Found: C, 78.25; H, 8.64; N, 5.74.
2-[(Diethylamino)methyl]-8-(1,3-dioxolan-2-yl)-1-naphthol (8b): Prepared by reducing 8-(1,3-dioxolan-2-yl)-N,N-diethyl-1-hydroxy-2-naphthamide (7b) with LiAlH4 according to the general procedure.²9 Obtained as a colourless semi-solid; yield: 42 mg (74%); R f 0.38 (hexane-Et2O, 1:4). IR (KBr): 3330 cm-¹. ¹H NMR (400 MHz, CDCl3): δ = 1.26 (t, J = 7.2 Hz, 6 H), 3.50 (q, J = 7.2 Hz, 4 H), 3.82 (s, 2 H), 4.08-4.18 (m, 5 H), 7.27-7.90 (m, 5 H), 11.45 (br s, 1 H). ¹³C NMR (100 MHz, CDCl3): δ = 13.22, 41.75, 42.10, 65.09, 102.16, 114.00, 119.06, 124.16, 126.84, 129.50. ES-MS: m/z = 302.3 [M + 1]+. Anal. Calcd for C18H23NO3: C, 71.73; H, 7.69; N, 4.65. Found: C, 71.48; H, 7.54; N, 4.51.
347-[(Diethylamino)methyl]-8-hydroxy-1-naphthaldehyde (9b): Compound 8b (0.04 g, 0.13 mmol) was dissolved in a mixture of 10% aq HCl (10 mL) and THF (10 mL) and heated under reflux for 1 h. After cooling, 10% aq K2CO3 was added dropwise to the reaction mixture until pH 5, followed by extraction with Et2O (3 × 10 mL). The combined organic extracts were dried (Na2SO4), filtered and concentrated in vacuo. The crude material was purified by crystallisation from hexane-EtOAc (6:1) to give colourless microcrystals; yield: 26 g (88%); mp 128-130 ˚C; R f 0.54 (hexane-Et2O, 3:2). IR (KBr): 3335, 1710 cm-¹. ¹H NMR (400 MHz, CDCl3): δ = 1.26 (t, J = 7.2 Hz, 6 H), 3.52 (q, J = 7.2 Hz, 4 H), 3.84 (s, 2 H), 7.25-8.10 (m, 5 H), 9.93 (s, 1 H), 11.85 (br s, 1 H). ¹³C NMR (100 MHz, CDCl3): δ = 41.39, 41.90, 117.54, 124.56, 131.59, 136.89, 192.12. ES-MS: m/z = 258.12 [M + 1]+. Anal. Calcd for C16H19NO2: C, 74.68; H, 7.44; N, 5.44. Found: C, 74.49; H, 7.31; N, 5.26.