RSS-Feed abonnieren
DOI: 10.1055/s-0029-1218536
Vinylepoxides as Versatile Substrates for Allylations of Amino Acids and Peptides
Publikationsverlauf
Publikationsdatum:
02. Dezember 2009 (online)

Abstract
Vinyl epoxides are excellent substrates for Pd-catalyzed allylic alkylations of chelated enolates. Nucleophilic attack on the predominantly formed syn/syn π-allyl complexes occurs regioselectively at the distal position. The E-configured product is formed preferentially, depending on the substitution pattern and the reaction conditions used.
Key words
allylic alkylation - amino acids - chelates - epoxides - palladium
- 1a
Hegedus LS. Organische Synthese mit Übergangsmetallen Wiley-VCH; Weinheim: 1995.Reference Ris Wihthout Link - 1b
Kazmaier U.Pohlman M. In Metal Catalyzed C-C and C-N Coupling Reactionsde Meijere A.Diederich F. Wiley-VCH; Weinheim: 2004. p.531-583 ; and references cited thereinReference Ris Wihthout Link - 2a
Consiglio G.Waymouth RM. Chem. Rev. 1989, 89: 257Reference Ris Wihthout Link - 2b
Trost BM.Van Vranken DL. Chem. Rev. 1996, 96: 395Reference Ris Wihthout Link - 2c
Helmchen G. J. Organomet. Chem. 1999, 576: 203Reference Ris Wihthout Link - 2d
Pfaltz A.Lautens M. In Comprehensive Asymmetric Catalysis I-IIIJacobsen EN.Pfaltz A.Yamamoto H. Springer; Berlin: 1999. p.833Reference Ris Wihthout Link - 2e
Acemoglu L.Williams JMJ. In Handbook of Organopalladium Chemistry for Organic SynthesisNegishi E.-I.de Meijere A. Eds.; Vol. 2: John Wiley, New York: 2002. p.1689Reference Ris Wihthout Link - 2f
Tsuji J. In Handbook of Organopalladium Chemistry for Organic Synthesis Vol. 2:Negishi E.-I.de Meijere A. John Wiley; New York: 2002. p.1689Reference Ris Wihthout Link - 2g
Trost BM.Crawley ML. Chem. Rev. 2003, 103: 2921Reference Ris Wihthout Link - 2h
Trost BM.Jiang C. Org. Lett. 2003, 5: 1563Reference Ris Wihthout Link - 2i
Trost BM.Xu J. J. Am. Chem. Soc. 2005, 127: 2846Reference Ris Wihthout Link - 2k
Trost BM.Brennan MK. Org. Lett. 2006, 8: 2027Reference Ris Wihthout Link - 3a
Poli G.Giambastiani G.Heumann A. Tetrahedron 2000, 56: 5959Reference Ris Wihthout Link - 3b
Faller JW.Wilt JC.Parr J. Org. Lett. 2004, 6: 1301Reference Ris Wihthout Link - 4a
Hayashi T.Yamamoto A.Hagihara T. J. Org. Chem. 1986, 51: 723Reference Ris Wihthout Link - 4b
Sjögren MPT.Hansson S.Åkermark B.Vitagliano A. Organometallics 1994, 13: 1963Reference Ris Wihthout Link - 4c
Hayashi T.Kawatsura M.Uozumi Y. J. Am. Chem. Soc. 1998, 120: 1681Reference Ris Wihthout Link - 4d
Blacker AJ.Clarke ML.Loft MS.Williams JMJ. Org. Lett. 1999, 1: 1969Reference Ris Wihthout Link - 5a
Trost BM.Bunt RC. J. Am. Chem. Soc. 1996, 118: 235Reference Ris Wihthout Link - 5b
Lloyd-Jones GC.Stephen SC. Chem. Eur. J. 1998, 4: 2539Reference Ris Wihthout Link - 5c
Poli G.Scolastico C. Chemtracts 1999, 12: 837Reference Ris Wihthout Link - 5d
Lloyd-Jones GC.Stephen SC.Murray M.Butts CP.Vyskocil S.Kocovsky P. Chem. Eur. J. 2000, 6: 4348Reference Ris Wihthout Link - 5e
Lloyd-Jones GC. Synlett 2001, 161Reference Ris Wihthout Link - 5f
Fairlamb IJS.Lloyd-Jones GC.Vyskocil S.Kocovsky P. Chem. Eur. J. 2002, 8: 4443Reference Ris Wihthout Link - 5g
Gouriou L.Lloyd-Jones GC.Vyskovil S.Kocovsky P. J. Organomet. Chem. 2003, 687: 525Reference Ris Wihthout Link - 5h
Lussem BJ.Gais H.-J. J. Org. Chem. 2004, 69: 4041Reference Ris Wihthout Link - 5i
Faller JW.Sarantopoulos N. Organometallics 2004, 23: 2179Reference Ris Wihthout Link - 6a
Sprinz J.Kiefer M.Helmchen G.Reggelin M.Huttner G.Walter O.Zsolnai L. Tetrahedron Lett. 1994, 35: 1523Reference Ris Wihthout Link - 6b
Brown JM.Hulmes DI.Guiry PJ. Tetrahedron 1994, 50: 4493Reference Ris Wihthout Link - 6c
Blöchl PE.Togni A. Organometallics 1996, 15: 4125Reference Ris Wihthout Link - 6d
Lloyd-Jones GC.Stephen SC. Chem. Commun. 1998, 2321Reference Ris Wihthout Link - 6e
Goldfuss B.Kazmaier U. Tetrahedron 2000, 56: 6493Reference Ris Wihthout Link - 6f
Fagnou K.Lautens M. Angew. Chem. Int. Ed. 2002, 41: 26 ; Angew. Chem. 2002, 114, 26Reference Ris Wihthout Link - 7a
Fristrup P.Jensen T.Hoppe J.Norrby P.-O. Chem. Eur. J. 2006, 12: 5352Reference Ris Wihthout Link - 7b
Svensen N.Fristrup P.Tanner D.Norrby P.-O. Adv. Synth. Catal. 2007, 349: 2631Reference Ris Wihthout Link - 7c
Kazmaier U.Stolz D.Krämer K.Zumpe F. Chem. Eur. J. 2008, 14: 1322Reference Ris Wihthout Link - 9a
Trost BM.Molander GA. J. Am. Chem. Soc. 1981, 103: 5969Reference Ris Wihthout Link - 9b
Tsuji J.Kataoka H.Kobayashi Y. Tetrahedron Lett. 1981, 22: 2575Reference Ris Wihthout Link - 10a
Tsuji J.Kataoka H.Kobayashi Y. Tetrahedron Lett. 1981, 27: 2575Reference Ris Wihthout Link - 10b
Trost BM.Warner RW. J. Am. Chem. Soc. 1982, 104: 6112Reference Ris Wihthout Link - 10c
Trost BM.Cossy J.
J. Am. Chem. Soc. 1982, 104: 6881Reference Ris Wihthout Link - 10d
Tsuda T.Horii Y.Nakagawa Y.Ishida T.Saegusa T. J. Org. Chem. 1989, 54: 977Reference Ris Wihthout Link - 10e
Szabó KJ. Chem. Soc. Rev. 2001, 30: 136Reference Ris Wihthout Link - 10f
Norsikian S.Chang C.-W. Curr. Org. Synth. 2009, 6: 264Reference Ris Wihthout Link - 11a
Trost BM.Ito N.Greenspan PD. Tetrahedron Lett. 1993, 34: 1421Reference Ris Wihthout Link - 11b
Trost BM.Bunt RC. Angew. Chem., Int. Ed. Engl. 1996, 35: 99 ; Angew . Chem . 1996, 108, 70Reference Ris Wihthout Link - 11c
Banwell MG.Haddad N.Hudlicky T.Nugent TC.Mackay MF.Richards SL. J. Chem. Soc., Perkin Trans. 1 1997, 1779Reference Ris Wihthout Link - 11d
Trost BM.Brown BS.McEachern EJ.Kuhn O. Chem. Eur. J. 2003, 9: 4442Reference Ris Wihthout Link - 11e
Trost BM.Lemoine RC. Tetrahedron Lett. 1996, 37: 9161Reference Ris Wihthout Link - 12a
Kazmaier U.Zumpe FL. Angew. Chem. Int. Ed. 1999, 38: 1468 ; Angew. Chem. 1999, 111, 1572Reference Ris Wihthout Link - 12b
Kazmaier U.Maier S.Zumpe FL. Synlett 2000, 1523Reference Ris Wihthout Link - 12c
Weiss TD.Helmchen G.Kazmaier U. Chem. Commun. 2002, 1270Reference Ris Wihthout Link - 12d
Kazmaier U. Curr. Org. Chem. 2003, 317Reference Ris Wihthout Link - 12e
Kazmaier U.Stolz D. Angew. Chem. Int. Ed. 2006, 45: 3072 ; Angew. Chem. 2006, 118, 3143Reference Ris Wihthout Link - 12f
Basak S.Kazmaier U. Org. Lett. 2008, 10: 501Reference Ris Wihthout Link - 13a
Kazmaier U.Deska J.Watzke A. Angew. Chem. Int. Ed. 2006, 45: 4855 ; Angew. Chem. 2006, 118, 4973Reference Ris Wihthout Link - 13b
Deska J.Kazmaier U. Angew. Chem. Int. Ed. 2007, 46: 4570 ; Angew. Chem. 2007, 119, 4654Reference Ris Wihthout Link - 13c
Deska J.Kazmaier U. Chem. Eur. J. 2007, 13: 6204Reference Ris Wihthout Link - 13d
Deska J.Kazmaier U. Curr. Org. Chem. 2008, 12: 7355Reference Ris Wihthout Link - 14a
Kazmaier U.Zumpe FL. Angew. Chem. Int. Ed. 2000, 39: 802 ; Angew. Chem. 2000, 112, 805Reference Ris Wihthout Link - 14b
Kazmaier U.Zumpe FL. Eur. J. Org. Chem. 2001, 4067Reference Ris Wihthout Link - 14c
Kazmaier U.Pohlman M. Synlett 2004, 623Reference Ris Wihthout Link - 14d
Kazmaier U.Pohlmann M.Lindner T. J. Org. Chem. 2004, 69: 6909Reference Ris Wihthout Link - 14e
Kazmaier U.Lindner T. Angew. Chem. Int. Ed. 2005, 44: 3303 ; Angew. Chem. 2005, 117, 3368Reference Ris Wihthout Link - 14f
Lindner T.Kazmaier U. Adv. Synth. Catal. 2005, 347: 1687Reference Ris Wihthout Link - 15a
Kazmaier U.Krämer K. J. Org. Chem. 2006, 71: 8950Reference Ris Wihthout Link - 15b
Krämer K.Deska J.Hebach C.Kazmaier U. Org. Biomol. Chem. 2009, 7: 103Reference Ris Wihthout Link - These types of epoxides were obtained via a modified Corey-Chaykovsky protocol, see:
- 16a
Corey EJ.Chaykovsky M. J. Am. Chem. Soc. 1962, 84: 867Reference Ris Wihthout Link - 16b
Corey EJ.Chaykovsky M. J. Am. Chem. Soc. 1965, 87: 1353Reference Ris Wihthout Link - 16c
Merz A.Märkl G. Angew. Chem., Int. Ed. Engl. 1973, 12: 845 ; Angew. Chem. 1973, 85, 867Reference Ris Wihthout Link - 16d For a review, see:
Aggarwal VK.Richardson J. Chem. Commun. 2003, 264 4; and references cited thereinReference Ris Wihthout Link - These types of epoxides are accessible via molybdenum-catalyzed hydrostannation of allenols and subsequent metal-iodine exchange/cyclization, see:
- 17a
Kazmaier U.Lucas S.Klein M. J. Org. Chem. 2006, 71: 2429Reference Ris Wihthout Link - 17b
Kazmaier U.Dörrenbächer S.Wesquet A.Lucas S.Kummeter M. Synthesis 2007, 320Reference Ris Wihthout Link
References and Notes
The syn/anti terminology was used to describe the relative orientation of the substituents at the allylic position relative to the hydrogen at the central position of the π-allyl-Pd complex.
18General procedure for the allylic alkylation with vinyl epoxides: In a Schlenk tube, hexamethyldisilazane (168 mg, 1.04 mmol, 2.8 equiv) was dissolved in anhydrous THF (2.0 mL). After the solution had been cooled to -78 ˚C, n-BuLi (1.6M, 0.58 mL, 0.93 mmol, 2.5 equiv) was added slowly. The solution was stirred for 10 min before the cooling bath was removed and the solution was stirred for a further 10 min. In a second Schlenk flask, ZnCl2 (56 mg, 0.41 mmol, 1.1 equiv) was dried with a heat gun under vacuum then dissolved in THF (2.0 mL). After the solution had been cooled to room temperature, Tfa-Gly-OtBu (85 mg, 0.374 mmol, 1 equiv) was added. The freshly prepared LHMDS solution was cooled again to -78 ˚C before the Tfa-Gly-OtBu/ZnCl2 solution was added slowly. This solution was stirred for 30 min at -78 ˚C. At the same time, a solution of [(allyl)PdCl]2 (1.4 mg, 3.8 µmol, 1.5 mol%) and Ph3P (4.9 mg, 18.8 µmol, 7.5 mol%) was prepared in THF (0.5 mL). After stirring for 5 min the vinylepoxide (0.25 mmol, 0.7 equiv) was added and the solution was added directly to the enolate at -78 ˚C. The reaction mixture was allowed to warm to r.t. overnight then diluted with ether and hydrolyzed with 1M HCl. The layers were separated and the aqueous layer was extracted twice with ether. The combined organic layers were dried (Na2SO4), the solvent was evaporated in vacuo, and the crude product was purified by flash chromatography (silica gel; hexanes-EtOAc).
19Spectroscopic and analytical data
of some selected products.
Compound
(
E
)-4: ¹H
NMR (400 MHz, CDCl3): δ = 6.96 (d, J = 4.9 Hz,
1 H), 5.75 (dtt, J = 15.3,
5.4, 1.0 Hz, 1 H), 5.56 (dtt, J = 15.3,
7.3, 1.4 Hz, 1 H), 4.54 (q, J = 5.5
Hz, 1 H), 4.10 (dd, J = 5.4,
1.4 Hz, 2 H), 2.69 (dddd, J = 14.2,
7.2, 5.2, 1.0 Hz, 1 H), 2.54 (dddd, J = 14.2,
7.2, 6.1, 1.0 Hz, 1 H), 1.49 (s, 9 H); ¹³C
NMR (100 MHz, CDCl3): δ = 169.2, 156.6 (J = 37.9 Hz),
134.5, 124.2, 115.6 (J = 287.6
Hz), 83.6, 62.9, 52.6, 34.6, 28.0.
Compound
(
Z
)-4: ¹H
NMR (400 MHz, CDCl3): δ (selected signals) = 7.48
(br s, 1 H), 5.88 (dtt,
J = 10.9,
6.7, 1.3 Hz, 1 H), 5.50 (dtt, J = 10.9,
7.9, 1.1 Hz, 1 H), 4.46 (q, J = 6.8
Hz, 1 H), 4.19 (dd, J = 6.7,
1.1 Hz, 2 H), 2.75 (dddd, J = 14.4, 7.9,
4.9, 1.1 Hz, 1 H), 2.65 (dddd, J = 14.4,
7.9, 6.8, 1.1 Hz, 1 H), 1.49 (s, 9 H). ¹³C
NMR (100 MHz, CDCl3): δ = 169.2, 132.5,
126.3, 83.4, 57.8, 52.5, 29.4, 27.9. HRMS (CI):
m/z [M + H]+ calcd
for C12H19F3NO4: 298.1221;
found: 298.1241. Anal. Calcd for for C12H18F3NO4 (297.27):
C, 48.48; H, 6.10; N, 4.71. Found: C, 48.32; H, 6.02; N, 4.96.
Compound 5a: Major diastereomer: ¹H
NMR (400 MHz, CDCl3): δ = 7.33 (dd J = 8.2,
6.9 Hz, 2 H), 7.28 (t, J = 7.1 Hz,
1 H), 7.22 (d, J = 8.5
Hz, 2 H), 6.68 (d, J = 8.6
Hz, 1 H), 5.98 (ddt,
J = 15.4,
8.5, 1.5 Hz, 1 H), 5.79 (dtd, J = 15.4,
5.2, 0.8 Hz, 1 H), 4.85 (dd, J = 8.6,
5.9 Hz, 1 H), 4.16 (dd, J = 5.2,
1.0 Hz, 2 H), 3.93 (dd, J = 8.4,
6.0 Hz, 1 H), 1.38 (s, 9 H). ¹³C NMR
(100 MHz, CDCl3): δ = 168.4, 156.7
(J = 37.5 Hz),
138.0, 133.3, 128.7, 128.1, 128.1, 127.7, 115.6 (J = 287.9
Hz), 83.6, 62.7, 56.9, 50.7, 27.8. Minor diastereomer: ¹H
NMR (400 MHz, CDCl3): δ (selected signals) = 6.85
(d, J = 8.4
Hz, 1 H), 4.78 (t, J = 8.5
Hz, 1 H), 4.11 (dd, J = 5.2,
1.1 Hz, 2 H), 3.65 (t, J = 8.8
Hz, 1 H), 1.22 (s, 9 H). ¹³C NMR (100
MHz, CDCl3): δ = 168.8, 138.3, 133.1,
128.9, 128.7, 128.2, 127.6, 115.7 (J = 287.5
Hz), 114.2, 83.3, 62.6, 52.7, 27.5. HRMS (CI): m/z [M - C4H9O]+ calcd
for C14H13F3NO3: 300.0848;
found: 300.0861.
Compound 8: ¹H
NMR (400 MHz, CDCl3): δ = 6.88 (d, J = 5.0 Hz,
1 H), 5.59 (ddt, J = 15.3,
6.2, 0.8 Hz 1 H), 5.49 (dtd, J = 15.3,
7.6, 0.9 Hz, 1 H), 4.52 (q,
J = 5.3
Hz, 1 H), 4.25 (quint, J = 6.8
Hz, 1 H), 3.87 (dt, J = 8.1,
7.3 Hz, 1 H), 3.76 (dt, J = 8.0,
6.4 Hz, 1 H), 2.67 (dddd, J = 13.8,
7.5, 5.4, 0.8 Hz, 1 H), 2.53 (dq, J = 13.7,
5.9 Hz, 1 H), 2.02 (m, 1 H), 1.95-1.82 (m, 2 H), 1.56 (m,
1 H), 1.49 (s, 9 H). ¹³C NMR (100 MHz,
CDCl3): δ = 169.2, 156.4 (J = 37.7 Hz),
136.8, 123.3, 115.6 (J = 288.0
Hz), 83.5, 78.8, 68.0, 52.6, 34.3, 32.1, 28.0, 25.7. HRMS (CI): m/z [M - C4H9]+ calcd
for C11H13F3NO4: 280.0797;
found: 280.0793.
Compound 17a:
Major diastereomer: ¹H NMR (400 MHz, CDCl3): δ = 7.57
(d, J = 7.7
Hz, 1 H), 7.34-7.18 (m, 5 H), 6.47 (d, J = 7.6
Hz, 1 H), 5.61 (dt, J = 15.3,
5.6 Hz, 1 H), 5.47 (dt, J = 15.2,
7.2 Hz, 1 H), 4.70 (q, J = 7.3
Hz, 1 H), 4.46 (ddd, J = 7.5,
6.4, 5.0 Hz, 1 H), 4.03 (m, 2 H), 3.11 (dd, J = 13.8,
7.7 Hz, 2 H), 2.56 (dt, J = 14.0,
6.7 Hz, 1 H), 2.37 (dt, J = 14.0,
6.6 Hz, 1 H), 1.46 (s, 9 H). ¹³C NMR
(100 MHz, CDCl3): δ = 170.0, 169.2,
157.0 (J = 37.6
Hz), 135.4, 133.9, 129.2, 128.6, 127.3, 125.2, 115.6 (J = 287.6
Hz), 82.6, 62.7, 54.7, 52.5, 37.9, 34.9, 27.9. Minor diastereomer: ¹H
NMR (400 MHz, CDCl3): δ (selected signals) = 7.47
(d, J = 7.8
Hz, 1 H), 6.39 (d,
J = 7.7
Hz, 1 H), 5.27 (dt, J = 15.1, 7.3
Hz, 1 H), 1.43 (s, 9 H). ¹³C NMR (100
MHz, CDCl3):
δ = 170.0, 169.0,
156.9 (J = 37.8
Hz), 135.4, 133.9, 129.2, 128.8, 127.3, 125.0, 82.7, 62.8, 52.3,
38.4, 34.7, 27.9. HRMS (CI): m/z [M + H]+ calcd
for C21H28F3N2O5: 445.1906;
found: 445.1942.