Subscribe to RSS
DOI: 10.1055/s-0029-1219175
Reactivity of 3-Iodo-4-quinolones in Heck Reactions: Synthesis of Novel (E)-3-Styryl-4-quinolones
Publication History
Publication Date:
07 January 2010 (online)

Abstract
A new and efficient route for the synthesis of (E)-N-methyl-3-styryl-4-quinolones is described. It involves the Heck reaction of N-methyl-3-iodo-4-quinolone, which is obtained by consecutive 3-iodination and NH-methylation of the unsubstituted 4-quinolone, with styrene derivatives. It is demonstrated that such a procedure is only efficient when the 3-iodo-4-quinolone has an N-protecting group. In some cases the branched regioisomers N-methyl-3-(1-phenylethenyl)-4-quinolones were also obtained as byproducts.
Key words
3-iodo-4-quinolones - 3-styryl-4-quinolones - Heck reaction - N-methylation - iodination
- 1
Coppola GM. J. Heterocycl. Chem. 1982, 727 - 2a
Oliphant CM.Green GM. Am. Fam. Phys. 2002, 65: 455Reference Ris Wihthout Link - 2b
Alós J.-I. Enferm. Infecc. Microbiol. Clin. 2003, 21: 261Reference Ris Wihthout Link - 2c
Van Bambeke F.Michot J.-M.Van Eldere J.Tulkens PM. Clin. Microb. Infect. 2005, 11: 256Reference Ris Wihthout Link - 2d
Mitscher LA. Chem. Rev. 2005, 105: 559Reference Ris Wihthout Link - 3a
Edlund C.Nord CE. Infection 1988, 16: 8Reference Ris Wihthout Link - 3b
Zhang Z.Yu A.Zhou W. Bioorg. Med. Chem. 2007, 15: 7274Reference Ris Wihthout Link - 3c
Zhu B.Marinelli BA.Goldschimidt R.Foleno BD.Hilliard JJ.Bush K.Macielag MJ. Biooorg. Med. Chem. Lett. 2009, 19: 4933Reference Ris Wihthout Link - 3d
Chai Y.Wan Z.-L.Wang B.Guo H.-Y.Liu M.-L. Eur. J. Med. Chem. 2009, 44: 4063Reference Ris Wihthout Link - 4a
Nakamura N.Kozuka M.Bastow KF.Tokuda H.Nishino H.Suzuki M.Tatsuzaki J.Natschke SLM.Kuo S.-C.Lee K.-H. Bioorg. Med. Chem. 2005, 13: 4396Reference Ris Wihthout Link - 4b
Wang S.-W.Pan S.-L.Huang Y.-C.Guh J.-H.Chiang P.-C.Huang D.-Y.Kuo S.-C.Lee K.-H.Teng C.-M. Mol. Cancer Ther. 2008, 7: 350Reference Ris Wihthout Link - 4c
Mugnain C.Pasquini S.Corelli F. Curr. Med. Chem. 2009, 16: 1746Reference Ris Wihthout Link - 4d
Massari S.Daelemans D.Manfroni G.Sabatini S.Tabarrini O.Pannecouque C.Cecchetti V. Bioorg. Med. Chem. 2009, 17: 667Reference Ris Wihthout Link - 5a
Li L.Wang H.-K.Kuo S.-C.Wu T.-S.Mauger A.Lin CM.Hamel E.Lee K.-H. J. Med. Chem. 1994, 37: 3400Reference Ris Wihthout Link - 5b
Xia Y.Yang Z.-Y.Xia P.Bastow KF.Nakanishi Y.Nampoothiri P.Hamel E.Brossi A.Lee K.-H. Bioorg. Med. Chem. Lett. 2003, 13: 2891Reference Ris Wihthout Link - 5c
Lai Y.-Y.Huang L.-J.Lee K.-H.Xiao Z.Bastow KF.Yamori T.Kuo S.-C. Bioorg. Med. Chem. 2005, 13: 265Reference Ris Wihthout Link - 5d
Hsu S.-C.Yang J.-S.Kuo C.-L.Lo C.Lin J.-P.Hsia T.-C.Lin J.-J.Lai K.-C.Kuo H.-M.Huang L.-J.Kuo S.-C.Wood WG.Chung J.-G. J. Orthop. Res. 2009, 27: 1637Reference Ris Wihthout Link - 6
Gatto B.Tabarrini O.Massari S.Giaretta G.Sabatini S.Del Vecchio C.Parolin C.Fravolini A.Palumbo M.Cecchetti V. ChemMedChem 2009, 4: 935 - 7
Sui Z.Nguyen VN.Altom J.Fernandez J.Hilliard JJ.Bernstein JI.Barret JF.Ohemeng KA. Eur. J. Med. Chem. 1999, 34: 381 - 8
Huang L.-J.Hsieh M.-C.Teng C.-M.Lee K.-H.Kuo S.-C. Bioorg. Med. Chem. 1998, 6: 1657 - 9
Ambrozin ARP.Vieira PC.Fernandes JB.da Silva MFGF. Quim. Nova 2008, 31: 740 - 10
Traxler P.Green J.Mett H.Séquin U.Furet P. J. Med. Chem. 1999, 42: 1018 - 11
Hadjeri M.Barbier M.Ronot X.Mariotte A.-M.Boumendjel A.Boutonnat J. J. Med. Chem. 2003, 46: 2125 - 12
Xiao Z.-P.Li H.-Q.Shi L.Lv P.-C.Song Z.-C.Zhu H.-L. ChemMedChem 2008, 3: 1077 - 13
Sonawane SA.Chavan VP.Shingare MS.Karale BK. Indian J. Heterocycl. Chem. 2002, 12: 65 - 14
Heck RF. J. Am. Chem. Soc. 1968, 90: 5518Reference Ris Wihthout Link - 15a
Beletskaya IP.Cheprakov AV. Chem. Rev. 2000, 100: 3009Reference Ris Wihthout Link - 15b
Knowles JP.Whiting A. Org. Biomol. Chem. 2007, 5: 31Reference Ris Wihthout Link - 19
Mphahlele MJ.Nwamadi M.Mabeta P. J. Heterocycl. Chem. 2006, 43: 255 - 21a
Jeffery T. Tetrahedron Lett. 1985, 26: 2667Reference Ris Wihthout Link - 21b
Jeffery T. Synthesis 1987, 70Reference Ris Wihthout Link - 24
Cabri W.Candiani I. Acc. Chem. Res. 1995, 28: 2 - 25
Coelho A.El-Maatougui A.Raviña E.Cavaleiro JAS.Silva AMS. Synlett 2006, 3324 - 29a
Loupy A. Microwaves in Organic Synthesis Wiley-VCH; Weinheim: 2002.Reference Ris Wihthout Link - 29b
Kappe CO. Angew. Chem. Int. Ed. 2004, 43: 6250Reference Ris Wihthout Link - 29c
Arvela RK.Leadbeater NE.
J. Org. Chem. 2005, 70: 1786Reference Ris Wihthout Link - 29d
Kappe CO.Dallinger D. Nat. Rev. Drug Discovery 2006, 5: 51Reference Ris Wihthout Link
References and Notes
Physical Data
for Quinolin-4 (1
H
)-one (1)
Mp 196-197 ˚. ¹H
NMR (300.13 MHz, DMSO-d
6): δ = 6.35 (d,
1 H, J = 7.2
Hz, H-3), 7.43 (ddd, 1 H, J = 7.8,
7.7, 0.8 Hz, H-6), 7.59 (d, 1 H, J = 8.1
Hz, H-8), 7.72 (ddd, 1 H, J = 8.1, 7.8,
1.3 Hz, H-7), 7.99 (d, 1 H, J = 7.2
Hz, H-2), 8.26 (d, 1 H, J = 7.7
Hz, H-5) ppm. ¹³C NMR (75.47 MHz, DMSO-d
6): δ = 109.8
(C-3), 119.5 (C-8), 125.3 (C-6), 126.1 (C-5), 126.7 (C-10), 133.6
(C-7), 141.5 (C-2, C-9), 180.8 (C-4) ppm. ESI+-MS: m/z (%) = 146
(100) [M + H]+. ESI+-HRMS: m/z calcd for [C9H7NO + H]+:
146.0606; found: 146.0604.
Optimized Experimental
Procedure
Sodium (0.4 g, 8.70 mmol) was added to a
solution of
2′-aminoacetophenone (1 mL, 8.23
mmol) in an excess of methyl formate (23 mL), and the reaction mixture
was stirred at 40 ˚C, under a nitrogen atmosphere. After
6 h, MeOH (10 mL) was added to the reaction mixture to destroy the
remaining sodium and the mixture was poured into H2O (60
mL) and ice (30 g). The organic layer was extracted with EtOAc (4 × 100
mL), dried over anhyd Na2SO4, and the solvent
evaporated to dryness. The residue was taken in acetone and purified
by chromatography column using a (3:2) mixture of acetone-CH2Cl2 as
eluent. The solvent was evaporated to dryness, and the residue was
recrystallized from CH2Cl2-light
PE to give quinolin-4 (1H)-one (1) as a yellowish solid (836.5 mg, 70%).
Physical Data
for 3-Iodoquinolin-4 (1
H
)-one (2)
Mp 217-218 ˚C. ¹H
NMR (300.13 MHz, DMSO): δ = 7.38 (ddd, 1 H, J = 8.2, 7.6,
1.1 Hz, H-6), 7.58 (d, 1 H, J = 8.1
Hz, H-8), 7.69 (ddd, 1 H, J = 8.1,
7.6, 1.3 Hz, H-7), 8.10 (d, 1 H, J = 8.2
Hz, H-5), 8.52 (s, 1 H, H-2), 12.24 (s, 1 H, NH) ppm. ¹³C
NMR (74.47 MHz, DMSO): δ = 80.7 (C-3), 118.5 (C-8), 122.5
(C-10), 124.1 (C-6), 125.5 (C-5), 131.9 (C-7), 139.6 (C-9), 144.8
(C-2), 173.0 (C-4) ppm. ESI+-MS: m/z (%) = 272
(100) [M + H]+, 294
(21) [M + Na]+. ESI+-HRMS: m/z calcd for [C9H6INO + H]+:
271.9572; found: 271.9579.
Optimized Experimental
Procedure
A mixture of quinolin-4 (1H)-one
(1, 300 mg, 2.07 mmol), Na2CO3 (329
mg, 3.11 mmol), and iodine (789 mg, 3.11 mmol) in dry THF (20 mL)
was stirred at r.t. for 6 h, under a nitrogen atmosphere. After
this period, the reaction mixture was poured into a sat. Na2S2O3 solution
(40 mL). The organic layer was extracted with EtOAc (3 × 100
mL), dried over anhyd Na2SO4 and the solvent
evaporated to dryness. The residue was recrystallized from CH2Cl2-light
PE to give 3-iodoquinolin-4 (1H)-one
(2, 454.6 mg, 81%), as a yellow solid.
Optimized Experimental
Procedure
A mixture of 3-iodoquinolin-4 (1H)-one (2, 50
mg, 0.18 mmol), Ph3P (4.7 mg, 0.018 mmol), Et3N
(25.1 µL, 0.18 mmol), tetrakis(triphenylphosphine)palladium(0)
(10.4 mg, 0.009 mmol), and styrene 3a (103.4 µL,
0.9 mmol) in NMP (3 mL) was stirred at 100 ˚C for 5 h,
under a nitrogen atmosphere. After this period, the reaction mixture
was poured into H2O (40 mL) and ice (30 g). The organic
layer was extracted with EtOAc (3 × 100
mL) and washed with H2O (100 mL). After initial purification
by TLC using a (3:1) mixture of CH2Cl2-acetone,
the solvent was evapor-ated to dryness and the residue recrystallized
from CH2Cl2-light PE to give (E)-3-styrylquinolin-4 (1H)-one(4) as a yellow solid (20.5 mg, 46%).
Traces of product 5 were found and 10% (5
mg) of the starting material was recovered.
Physical Data
of (
E
)-3-Styrylquinolin-4
(1
H
)-one
(4)
Mp 269-270 ˚C. ¹H
NMR (300.13 MHz, CD3OD): δ = 7.23 (m,
1 H, H-4′), 7.27 (d, 1 H, J = 16.2
Hz, H-α), 7.38 (m, 3 H, H-6, H-3′,5′),
7.63 (m, 4 H, H-7, H-8, H-2′,6′), 7.91 (d, 1 H, J = 16.2 Hz,
H-β), 8.24 (s, 1 H, H-2), 8.36 (dd, 1 H, J = 8.4, 0.9
Hz, H-5), 11.11 (s, 1 H, NH) ppm. ¹³C
NMR (75.47 MHz, CD3OD): δ = 118.6 (C-3),
118.9 (C-8), 124.2 (C-6), 124.7 (C-α), 126.8 (C-5, C-2′,6′),
126.7 (C-10), 127.5 (C-4′), 128.2 (C-β), 129.4
(C-3′,5′), 132.2 (C-7), 138.8 (C-2), 139.8 (C-9),
139.8 (C-1′) 176.6 (C-4) ppm. ESI+-MS: m/z (%) = 248
(100) [M + H]+. Anal.
Calcd (%) for C17H13NO (247.3): C,
82.57; H, 5.30; N, 5.66. Found: C, 82.47; H, 5.22; N, 5.62.
Physical Data
for 1-Methyl-3-iodoquinolin-4 (1
H
)-one (6)
Mp 177-178 ˚C. ¹H
NMR (300.13 MHz, DMSO-d
6): δ = 3.00
(s, 3 H, NCH3), 7.47 (ddd, 1 H, J = 7.8,
6.8, 1.2 Hz, H-6), 7.70 (d, 1 H, J = 9.0
Hz, H-8) 7.79 (ddd, 1 H, J = 9.0,
6.8, 1.6 Hz, H-7), 8.32 (dd, 1 H, J = 7.8,
1.6 Hz, H-5) ppm. ¹³C NMR (75.47 MHz,
DMSO-d
6): δ = 40.8
(NCH3), 80.3 (C-3), 117.3 (C-8), 124.3 (C-10), 125.0
(C-6), 127.5 (C-5), 132.9 (C-7), 141.4 (C-9), 150.2 (C-2), 173.8
(C-4) ppm. ESI+-MS: m/z (%) = 286
(100) [M + H]+, 308
(67) [M + Na]+. ESI+-HRMS: m/z calcd for [C10H8INO + H]+:
285.9729; found: 285.9728.
Optimized Experimental
Procedure
A mixture of 3-iodoquinolin-4 (1H)-one (2, 200
mg, 0.74 mmol), PS-TBD (1.39 mmol/1 g, 1.33 g, 1.85 mmol)
and MeI (0.47 mL, 7.4 mmol) in fresh dry THF (40 mL) was stirred
at r.t. for 3 h. After this period, the reaction mixture was poured
into a mixture of H2O (100 mL) and Et3N (8
mL) and neutralized with HCl (10%). The PS-TBD was filtered off,
and the organic layer was extracted with EtOAc (3 × 150 mL),
dried over anhyd Na2SO4, and the solvent evaporated to
dryness. The product 1-methyl-3-iodoquinolin-4 (1H)-one
(6) was recrystallized from CH2Cl2-light
PE and obtained as a yellow solid (200.4 mg, 95%).
Physical Data for 1-Methyl-3-(1-phenylvinyl)quinolin-4 (1 H )-one (8a) ¹H NMR (300.13 MHz, CDCl3): δ = 3.81 (s, 3 H, NCH3), 5.65 (d, 1 H, J = 1.7 Hz, H-2′), 5.78 (d, 1 H, J = 1.7 Hz, H-2′), 7.31 (m, 3 H, H-3′′,4′′,5′′), 7.44 (m, 4 H, H-6, H-8, H-2′′,6′′), 7.55 (s, 1 H, H-2), 7.70 (ddd, 1 H, J = 7.8, 7.4, 1.6 Hz, H-7), 8.52 (dd, 1 H, J = 8.3, 1.6 Hz, H-5) ppm. ¹³C NMR (75.47 MHz, CDCl3): δ = 40.7 (NCH3), 115.1 (C-8), 116.6 (C-2′), 122.4 (C-3), 123.8 (C-6), 127.1 (C-10), 127.2 (C-2′′,6′′), 127.5 (C-4′′), 127.7 (C-5), 128.3 (C-3′′,5′′), 132.0 (C-7), 140.0 (C-9), 141.3 (C-1′′), 143.5 (C-2), 143.8 (C-1′), 176.2 (C-4) ppm. ESI+-HRMS: m/z calcd for [C18H15NO + H]+: 262.1232; found: 262.1226.
30
Physical Data
for (
E
)-3-(4-Methoxystyryl)-1-methylquinolin-4
(1
H
)-one
(7b)
Mp 134.7-135.0 ˚C.
¹H NMR (300.13
MHz, CDCl3): δ = 3.82 (s, 3 H, OCH3),
3.83 (s, 3 H, NCH3), 6.87 (d, 2 H, J = 8.7
Hz, H-2′,6′), 7,01 (d, 1 H, J = 16.3
Hz, H-α), 7.38 (m, 2 H, H-6, H-8), 7,44 (d, 2 H, J = 8.7 Hz,
H-3′,5′), 7.56 (d, 1 H, J = 16.3
Hz, H-β), 7.65 (ddd, 1 H, J = 7.8,
7.4, 1.4 Hz, H-7), 7.69 (s, 1 H, H-2), 8.52 (d, 1 H, J = 7.5 Hz,
H-5) ppm. ¹³C NMR (75.47 MHz, CDCl3): δ = 40.9
(OCH3), 55.3 (NCH3), 114.0 (C-3′,5′),
115.2 (C-8), 118.8 (C-3), 120.4 (C-α), 123.8 (C-6), 126.5
(C-10), 127.2 (C-5), 127.5 (C-2′,6′), 127.8 (C-β),
131.0 (C-1′), 131.7 (C-7), 139.2 (C-9), 141.6 (C-2), 158.9 (C-4′),
176.1 (C-4) ppm. ESI+-MS: m/z (%) = 292
(100) [M + H]+, 314
(10) [M + Na]+. ESI+-HRMS: m/z calcd for [C19H17NO2 + H]+:
292.1338; found: 292.1335.