Subscribe to RSS
DOI: 10.1055/s-0029-1219189
A Practical Synthesis of Sugar-Derived Cyclic Nitrones: Powerful Synthons for the Synthesis of Iminosugars
Publication History
Publication Date:
11 January 2010 (online)

Abstract
Sugar-derived cyclic nitrones were synthesized from the corresponding aldoses through an efficient and practical procedure involving a seven-step reaction sequence in good to excellent overall yield (10-42%). This synthetic strategy, requiring only inexpensive reagents, is easy to perform and hence suitable for large-scale preparations.
Key words
sugar-derived cyclic nitrones - synthesis - iminosugars - nitrones
- Supporting Information for this article is available online:
- Supporting Information (PDF)
- For books, see:
- 1a
Stütz AE. Iminosugars as Glycosidase Inhibitors: Nojirimycin and Beyond Wiley-VCH; Weinheim: 1999.Reference Ris Wihthout Link - 1b
Compain P.Martin OR. Iminosugars: From Synthesis to Therapeutic Applications John Wiley & Sons; Chichester: 2007.Reference Ris Wihthout Link - For reviews, see:
- 1c
Asano N.Nash RJ.Molyneux RJ.Fleet GWJ. Tetrahedron: Asymmetry 2000, 11: 1645Reference Ris Wihthout Link - 1d
Afarinkia K.Bahar A. Tetrahedron: Asymmetry 2005, 16: 1239Reference Ris Wihthout Link - For reviews, see:
- 2a
Winchester B.Fleet GWJ. Glycobiology 1992, 2: 199Reference Ris Wihthout Link - 2b
Sears P.Wong CH. Chem. Commun. 1998, 1161Reference Ris Wihthout Link - 2c
Compain P.Martin OR. Curr. Top. Med. Chem. 2003, 3: 541Reference Ris Wihthout Link - For reviews, see:
- 3a
Watson AA.Fleet GWJ.Asano N.Molyneux RJ.Nash RJ. Phytochemistry 2001, 56: 265Reference Ris Wihthout Link - 3b
Asano N. Glycobiology 2003, 13: 93RReference Ris Wihthout Link - 3c
Ye XS.Sun F.Liu M.Li Q.Wang Y.Zhang G.Zhang LH.Zhang XL. J. Med. Chem. 2005, 48: 3688Reference Ris Wihthout Link - 4a
Poitout L.LeMerrer Y.Depezay JC. Tetrahedron Lett. 1996, 37: 1609Reference Ris Wihthout Link - 4b
Ichikawa Y.Igarashi Y.Ichikawa M.Suhara Y. J. Am. Chem. Soc. 1998, 120: 3007Reference Ris Wihthout Link - 4c
Pearson MSM.Mathe-Allainmat M.Fargeas V.Lebreton J. Eur. J. Org. Chem. 2005, 2159Reference Ris Wihthout Link - 4d
Asano N.Ikeda K.Yu L.Kato A.Takebayashi K.Adachi I.Kato I.Ouchi H.Takahata H.Fleet GWJ. Tetrahedron: Asymmetry 2005, 16: 223Reference Ris Wihthout Link - 4e
Chang MY.Kung YH.Ma CC.Chen ST. Tetrahedron 2007, 63: 1339Reference Ris Wihthout Link - 4f
Mohan S.Pinto BM. Carbohydr. Res. 2007, 342: 1551Reference Ris Wihthout Link - 5a
Tsou EL.Chen SY.Yang MH.Wang SC.Cheng TRR.Cheng WC. Bioorg. Med. Chem. 2008, 16: 10198Reference Ris Wihthout Link - 5b
Stecko S.Jurczak M.Urbanczyk-Lipkowska Z.Solecka J.Chmielewski M. Carbohydr. Res. 2008, 343: 2215Reference Ris Wihthout Link - 5c
Stecko S.Mames A.Furman B.Chmielewski M. J. Org. Chem. 2009, 74: 3094Reference Ris Wihthout Link - 6
Ueda T.Inada M.Okamoto I.Morita N.Tamura O. Org. Lett. 2008, 10: 2043 - 7a
Kuznetsov ML.Kukushkin VY. J. Org. Chem. 2006, 71: 582Reference Ris Wihthout Link - 7b
Kuznetsov ML.Nazarov AA.Kozlova LV.Kukushkin VY. J. Org. Chem. 2007, 72: 4475Reference Ris Wihthout Link - 7c
Badoiu A.Brinkmann Y.Viton F.Kundig EP. Pure Appl. Chem. 2008, 80: 1013Reference Ris Wihthout Link - 7d
Stecko S.Pasniczek K.Jurczak M.Solecka J.Chmielewski M. Pol. J. Chem. 2009, 83: 237Reference Ris Wihthout Link - 7e
Marradi M.Corsi M.Cicchi S.Bonanni M.Cardona F.Goti A. Heterocycles 2009, 79: 883Reference Ris Wihthout Link - 8a
Merino P.Franco S.Merchan FL.Tejero T. Synlett 2000, 442Reference Ris Wihthout Link - 8b
Merino P.Revuelta J.Tejero T.Cicchi S.Goti A. Eur. J. Org. Chem. 2004, 776Reference Ris Wihthout Link - 8c
Murga J.Portoles R.Falomir E.Carda M.Marco JA. Tetrahedron: Asymmetry 2005, 16: 1807Reference Ris Wihthout Link - 8d
Yang SH.Caprio V. Synlett 2007, 1219Reference Ris Wihthout Link - 8e
Berini C.Minassian F.Pelloux-Leon N.Denis JN.Vallee Y.Philouze C. Org. Biomol. Chem. 2008, 6: 2574Reference Ris Wihthout Link - 9
Merino P.Delso I.Tejero T.Cardona F.Marradi M.Faggi E.Parmeggiani C.Goti A. Eur. J. Org. Chem. 2008, 2929 - 10a
Masson G.Zeghida W.Cividino P.Py S.Vallee Y. Synlett 2003, 1527Reference Ris Wihthout Link - 10b
Chavarot M.Rivard M.Rose-Munch F.Rose E.Py S. Chem. Commun. 2004, 2330Reference Ris Wihthout Link - 10c
Desvergnes S.Py S.Vallee Y. J. Org. Chem. 2005, 70: 1459Reference Ris Wihthout Link - 10d
Masson G.Philouze C.Py S. Org. Biomol. Chem. 2005, 3: 2067Reference Ris Wihthout Link - 10e
Desvergnes S.Desvergnes V.Martin OR.Itoh K.Liu HW.Py S. Bioorg. Med. Chem. 2007, 15: 6443Reference Ris Wihthout Link - 10f
Rehák J.Fiera L.Prónayová N. ARKIVOC 2009, (vi): 146Reference Ris Wihthout Link - 10g
Wu SF.Zheng X.Ruan YP.Huang PQ. Org. Biomol. Chem. 2009, 7: 2967Reference Ris Wihthout Link - 11a
Toyao A.Tamura O.Takagi H.Ishibashi H. Synlett 2003, 35Reference Ris Wihthout Link - 11b
Cardona F.Moreno G.Guarna F.Vogel P.Schuetz C.Merino P.Goti A. J. Org. Chem. 2005, 70: 6552Reference Ris Wihthout Link - 11c
Gurjar MK.Borhade RG.Puranik VG.Ramana CV. Tetrahedron Lett. 2006, 47: 6979Reference Ris Wihthout Link - 12a
Goti A.Cacciarini M.Cardona F.Cordero FM.Brandi A. Org. Lett. 2001, 3: 1367Reference Ris Wihthout Link - 12b
Yu CY.Huang MH. Org. Lett. 2006, 8: 3021Reference Ris Wihthout Link - 13a
Revuelta J.Cicchi S.Goti A.Brandi A. Synthesis 2007, 485Reference Ris Wihthout Link - 13b
Grigor’ev IA. ARKIVOC 2009, (iv): 136Reference Ris Wihthout Link - 14a
Cicchi S.Marradi M.Corsi M.Faggi C.Goti A. Eur. J. Org. Chem. 2003, 4152Reference Ris Wihthout Link - 14b
Cardona F.Gorini L.Goti A. Lett. Org. Chem. 2006, 3: 118Reference Ris Wihthout Link - 14c
Bonanni M.Marradi M.Cicchi S.Goti A. Synlett 2008, 197Reference Ris Wihthout Link - 15a
vandenBroek L. Tetrahedron 1996, 52: 4467Reference Ris Wihthout Link - 15b
Robinson AJ.DeLucca I.Drummond S.Boswell GA. Tetrahedron Lett. 2003, 44: 4801Reference Ris Wihthout Link - 16a
Soldaini G.Cardona F.Goti A. Org. Lett. 2007, 9: 473Reference Ris Wihthout Link - 16b
Cardona F.Bonanni M.Soldaini G.Goti A. ChemSusChem 2008, 1: 327Reference Ris Wihthout Link - 17a
Oppolzer W.Tamura O.Deerberg J. Helv. Chim. Acta 1992, 75: 1965Reference Ris Wihthout Link - 17b
Oppolzer W.Merifield E. Helv. Chim. Acta 1993, 76: 957Reference Ris Wihthout Link - 17c
Oppolzer W.Deerberg J.Tamura O. Helv. Chim. Acta 1994, 77: 554Reference Ris Wihthout Link - 17d
Chackalamannil S.Wang YG. Tetrahedron 1997, 53: 11203Reference Ris Wihthout Link - 18a
Holzapfel CW.Crous R. Heterocycles 1998, 48: 1337Reference Ris Wihthout Link - 18b
Cicchi S.Corsi M.Brandi A.Goti A. J. Org. Chem. 2002, 67: 1678Reference Ris Wihthout Link - 18c
Cardona F.Faggi E.Liguori F.Cacciarini M.Goti A. Tetrahedron Lett. 2003, 44: 2315Reference Ris Wihthout Link - 18d
Cicchi S.Marradi M.Vogel P.Goti A. J. Org. Chem. 2006, 71: 1614Reference Ris Wihthout Link - 18e
Tsou EL.Yeh YT.Liang PH.Cheng WC. Tetrahedron 2009, 65: 93Reference Ris Wihthout Link - 18f
Racine E.Bello C.Gerber-Lemaire S.Vogel P.Py S. J. Org. Chem. 2009, 74: 1766Reference Ris Wihthout Link - 19
Tamura O.Toyao A.Ishibashi H. Synlett 2002, 1344 - 20a
Joshi U.Josse S.Pipelier M.Chevallier F.Pradère J.-P.Hazard R.Legoupy S.Huet F.Dubreuil D. Tetrahedron Lett. 2004, 45: 1031Reference Ris Wihthout Link - 20b
Nadein ON.Kornienko A. Org. Lett. 2004, 6: 831Reference Ris Wihthout Link
References and Notes
General methods
for the synthesis of 5 and 10:
Method
A: Compounds 1 and 6 were
prepared from the corresponding aldoses (90 g 0.6 mol) in three
steps according to the literature²0 and were
used directly in the next step without further purification. NH2OMe˙HCl
(55.12 g, 0.66 mol, 1.1 equiv) and Et3N (91.9 mL, 0.66
mol, 1.1 equiv) were added to a solution of crude compound 1 or 6 (crude
product prepared from 0.6 mol aldose) in anhydrous CH2Cl2 (300
mL). The reaction reached completion after vigorous stirring for
about 12 h. The reaction mixture was then concentrated
in vacuo and the resulting mixture was dissolved in EtOAc-H2O.
The organic phase was separated and the aqueous phase was extracted
with EtOAc (3 × 150 mL). The combined
organic phases were dried with anhydrous Na2SO4 and
filtered, the filtrate was concentrated in vacuo to give the crude
product 2 or 7,
which was used directly in the next step of reaction without further purification.
To an ice-cooled solution of 2 or 7 in Et3N (91.9 mL, 0.66 mol,
1.1 equiv) and CH2Cl2 (300 mL), was
added methanesulfonyl chloride (51.08 mL, 0.66 mol, 1.1 equiv) slowly,
and the mixture was allowed to warm gradually to r.t. After 1 h,
the reaction mixture was quenched by addition of H2O
(200 mL). The organic phase was separated and the aqueous phase
was extracted with EtOAc (3 × 150 mL).
The combined organic phases were dried over anhydrous MgSO4.
After filtration, the solvent was removed in vacuo to give crude
product 3 or 8 as
a yellow oil, which was used directly in the next step without further
purification. To a well-stirred solution of 3 or 8 in THF (400 mL), p-TsOH (114
g, 0.6 mol) and aq HCHO (37%, 150 mL) were added subsequently.
After stirring for 36 h, the reaction was neutralized with
sat. aq NaHCO3. EtOAc (600 mL) was added to the reaction
mixture, the organic phase was separated and the aqueous phase was
extracted with EtOAc (3 × 150 mL). The
combined organic phases were dried with anhydrous Na2SO4.
After filtration, the filtrate was concentrated in vacuo, the resulting
crude product 4 or 9 was used
directly in the next step of reaction without further purification.
A solution of NH2OH˙HCl (93.15 g, 1.35 mol) and
NaHCO3 (113.4 g, 1.35 mol) in H2O (150 mL)
was added to the solution of crude 4 or 9 in EtOH (600 mL) dropwise. The reaction
mixture was stirred at r.t. for 12 h and then stirred at
about 60 ˚C until TLC showed the reaction to have
reached completion. The solvents were removed in vacuo and the residue
was dissolved in EtOAc (300 mL) and H2O (200 mL). The
organic phase was separated and the aqueous phase was extracted
with EtOAc (3 × 150 mL). The
combined organic phases were dried with anhydrous Na2SO4.
After filtration and concentration in vacuo, the resulting crude
product was either recrystallized or purified by flash column chromatography
(petroleum ether-EtOAc, 2:1→1:2). Method
B: The same procedure as method A was used with purified compounds 1 and 6 as starting
material. Compound 5a: 129.0 g
(23% from 200 g d-arabinose);
79.4 g from 210.3 g 1a (38%).
Yellow oil; [α]
d
²0 -78
(c 1.08, CH2Cl2) {Lit¹8d [α]
d
²³ -75.9
(c 0.54, CH2Cl2)}.
IR (thin film): 3030 (w), 2866 (m), 1582 (s), 1496 (w), 1454 (s),
1363 (m), 1095 (s), 737 (s), 697 (s) cm-¹. ¹H NMR
(300 MHz, CDCl3): δ = 7.27-7.14
(m, 15 H, Ph), 6.73 (s, 1 H, H-2), 4.67 (t, J = 2.1 Hz,
1 H, H-3), 4.58-4.38 (m, 6 H, PhCH
2), 4.28 (dd, J = 7.6, 4.5
Hz, 1 H, H-4), 4.08-4.03 (m, 1 H, H-5),
3.90 (dd, J = 10.1,
4.3 Hz, 1 H, H-6), 3.73 (dd, J = 10.1,
1.6 Hz, 1 H, H-6). ¹³C NMR
(75 MHz, CDCl3): δ = 138.0,
137.4, 137.3, 133.4 (C-2), 128.7, 128.6, 128.4, 128.2, 128.1, 128.0,
127.9, 127.6 (Ph), 83.2 (C-3), 80.6 (C-4), 74.2 (C-5), 73.6, 73.2,
72.5, 64.5 (C-6). Compound 10a: 88.2 g
(42% from 75 g d-arabinose);
94 g from 181.6 g 6a (52%).
Light-yellow oil; [α]
d
²0 -44
(c 1.17, CHCl3). IR (thin
film): 2960 (s), 2925 (s), 2855 (s), 1597 (w), 1454 (m), 1260 (s),
1023 (s), 800 (s), 739 (m), 698 (m) cm-¹. ¹H
NMR (300 MHz, CDCl3): δ = 7.33-7.25
(m, 15 H, Ph), 7.01 (d, J = 2.9
Hz, 1 H, H-2), 4.94-4.58 (m, 6 H, PhCH2),
4.31 (d, J = 3.6
Hz, 1 H, H-3), 4.06-3.82 (m, 4 H, H-6,
H-4, H-5). ¹³C NMR (75 MHz,
CDCl3): δ = 137.6, 137.3, 128.6, 133.4
(C-2), 128.6, 128.5, 128.2, 128.1, 128.0, 127.9, 127.8 (Ph), 74.6,
73.5, 72.9, 72.8, 72.1, 71.4 (C-3, C-4, C-5), 60.0 (C-6). TOF-HRMS
(ESI+): m/z [M + H]+ calcd for
C26H28NO4: 418.2013; found: 418.2001.