RSS-Feed abonnieren
DOI: 10.1055/s-0029-1219382
Thioimidate N-Oxides: From Nature to Synthetic Pathways
Publikationsverlauf
Publikationsdatum:
10. Februar 2010 (online)

Abstract
Inspired by the unexpected reactivity of desulfated naturally occurring glucoraphenin, methods to synthesize thioimidate N-oxides (TIO) have been devised on simple or carbohydrate templates. Either through halocyclization or under Mitsunobu conditions, the starting thiohydroximates cyclized to generate efficiently the corresponding TIO.
Key words
carbohydrates - cyclization - heterocycles - azasugars - thio function
- 1
Fahey JW.Zalcmann AT.Talalay P. Phytochemistry 2001, 56: 5 - 2a
Valgimigli L.Iori R. Environ. Mol. Mutagen. 2009, 50: 222Reference Ris Wihthout Link - 2b
Mawson R.Heaney RK.Zdunczyk Z.Kozowska H. Nahrung 1995, 39: 21Reference Ris Wihthout Link - Purified arylsulfatase (E.C.3.1.6.1) from Helix pomatia is currently used:
- 3a
EEC Regulation No. 1864/90, Enclosure VIII ; Offic. J. Eur. Commun.; 1990, L170: 27
Reference Ris Wihthout Link - 3b
Wathelet J.-P.Iori R.Leoni O.Rollin P.Quinsac A.Palmieri S. Agroindustria 2004, 3: 257Reference Ris Wihthout Link - 4a
Iori R.Barillari J.Gallienne E.Bilardo C.Tatibouët A.Rollin P. Tetrahedron Lett. 2009, 50: 3302Reference Ris Wihthout Link - 4b
Coates RM.Firsan SJ. J. Org. Chem. 1986, 51: 5198Reference Ris Wihthout Link - 5a
Grigg R.Hadjisoteriou M.Kennewell P.Markandu J.Thornton-Pett M. J. Chem. Soc., Chem. Commun. 1992, 1388Reference Ris Wihthout Link - 5b
Grigg R.Hadjisoteriou M.Kennewell P.Markandu J.Thornton-Pett M. J. Chem. Soc., Chem. Commun. 1993, 1340Reference Ris Wihthout Link - 6a
Jäger V.Bierer L.Dong H.-Q.Palmer AM.Shaw D.Frey W. J. Heterocycl. Chem. 2000, 37: 455Reference Ris Wihthout Link - 6b
Gulla M.Bierer L.Schmidt S.Redcliffe L.Jäger V. Z. Naturforsch., B: Chem. Sci. 2006, 61: 471Reference Ris Wihthout Link - 7
Revuelta J.Cicchi S.Goti A.Brandi A. Synthesis 2007, 485 ; and references cited therein - 8
Bourderioux A.Lefoix M.Gueyrard D.Tatibouët A.Cottaz S.Arzt S.Burmeister WP.Rollin P. Org. Biomol. Chem. 2005, 3: 1872 - 9a
Lohse-Fraedel N.Carreira EM. Org. Lett. 2005, 7: 2011Reference Ris Wihthout Link - 9b
Becker N.Carreira EM. Org. Lett. 2007, 9: 3857Reference Ris Wihthout Link - 10a
Rowley M.Leeson PD.Williams BJ.Moore KW.Baker R. Tetrahedron 1992, 48: 3357Reference Ris Wihthout Link - 10b
Elworthy STR,Roepel MG, andSmith DB. inventors; WO 03/007941.Reference Ris Wihthout Link - 10c
Cicchi S.Corsi M.Brandi A.Goti A. J. Org. Chem. 2002, 67: 1678Reference Ris Wihthout Link - 11
Muri D.Bode JW.Carreira EM. Org. Lett. 2000, 2: 539 - 12
Jung ME.Gervay J. J. Am. Chem. Soc. 1991, 113: 224 - 13
Argyropoulos NG.Panagiotidis TD.Gallos JK. Tetrahedron: Asymmetry 2006, 17: 829 - 14
Cicchi S.Marradi M.Vogel P.Goti A. J. Org. Chem. 2006, 71: 1614 - 17
Schleiss J.Rollin P.Tatibouët A. Angew. Chem. Int. Ed. 2010, 49: 577
References and Notes
Preparation of
the Thiohydroximate 19
NCS (0.88 g, 6.6 mmol) was
added to a solution of aldoxime 18 (1.75
g, 6 mmol) in DMF (5 mL), and the mixture was left at r.t. for 4
h. After cooling to -78 °C, ethanethiol (1.33
mL, 18 mmol) then Et3N (2.5 mL, 18 mmol) were added dropwise.
The reaction mixture was slowly allowed to reach r.t. and stirred
for a further 12 h. After hydrolysis (H2O, 100 mL) and
extraction with CH2Cl2 (3 ¥ 100
mL), the combined organic phases were washed with brine (3 ¥ 50
mL), dried over MgSO4, filtered, and then evaporated.
Purification of the residue over silica gel (PE-EtOAc,
7:3) afforded the 4-O-silylated derivative of 24 as
an oil. This intermediate was dissolved in THF (20 mL) and reacted
with TBAT (1.2 equiv) at r.t. for 14 h. H2O (20 mL) was
then added and the mixture was extracted with CH2Cl2 (3 ¥ 30
mL). The combined organic phases were washed with brine, dried over MgSO4,
then evaporated under reduced pressure. S-Ethyl 2,3-O-isopropylidene-l-erythronimidothioate
(19) was isolated as a colorless solid
(1.2 g, 84% yield) by silica gel flash chromatography (PE-EtOAc,
1:1). Mp 40-41 °C; R
f
= 0.18
(PE-EtOAc, 1:1); [a]D
²0 -54
(c 1.0, CHCl3). IR (KBr):
3356, 2992, 1688, 1451, 1375, 1269, 1223, 1208, 1056, 998, 895,
859, 806, 740 cm-¹. ¹H
NMR (400 MHz, CDCl3): d = 1.33 (t, 3 H, J = 7.6 Hz,
CH3CH2), 1.40 and 1.53 [2 s, 6 H,
C(CH3)2], 3.11 (m, 2 H, CH3CH2),
3.68 (m, 1 H, H-4b), 3.79 (m, 1 H, H-4a), 4.40 (dd, 1 H, J
2,3 = 6.0
Hz, J
3,4 = 4.4
Hz, H-3), 4.89 (d, 1 H, J
2,3 = 6.0
Hz, H-2), 9.40 (s, 1 H, NOH). ¹³C NMR
(100 MHz, CDCl3) : d = 15.1 (CH3CH2),
25.6 (CH3CH2), 25.4, 27.3 [C(CH3)2],
61.7 (C-4), 76.9 (C-2), 78.6 (C-3), 109.5 (C(CH3)2),
150.8 (C=N). MS (IS): m/z = 236.0 [M + H]+.
ESI-HRMS: m/z [M + H]+ calcd for
C9H18NO4S: 236.0957; found: 236.0968.
Preparation of
the Thioimidate N
-Oxide
21
Ph3P (55 mg, 0.21 mmol) was added to
a solution of DEAD (40% in toluene, 95 mL, 0.21 mmol) in
THF (10 mL). After 10 min of stirring, the thiohydroximate 19 (50 mg, 0.21 mmol) was added, and the
reaction mixture was kept at reflux overnight. After hydrolysis
(H2O, 20 mL) and extraction with CH2Cl2 (3 ¥ 30
mL), the combined organic phases were dried over MgSO4,
filtered, and then evaporated. (3S,4S)-2-Ethylsulfanyl-3,4-isopropylidene-dioxy-3,4-dihydro-5H-pyrrole-1-oxide (21)
was isolated as a colorless solid (45 mg, 98% yield) after
silica gel flash chromatography (EtOAc). Mp 145-150 °C; R
f
= 0.5 (EtOAc); [a]D
²0 -136.5
(c 1.0, MeOH). IR (neat): 1570, 1422,
1383, 1261, 1234, 1204, 1154, 1076, 1021, 864, 836, 706, 663 cm-¹. ¹H
NMR (400 MHz, CDCl3): d = 1.37
(t, 3 H, J = 7.6
Hz, CH3CH2), 1.39 and 1.44 [2 s,
6 H, C(CH3)2], 3.13 (q, 2 H, J = 7.6 Hz,
CH3CH2), 4.06 (dt, 1 H, ²
J
5b,5a = 14.7
Hz, J
5b,4 = 5
J
5b,3 = 1.2
Hz, H-5b), 4.13 (dd, 1 H, ²
J
5b,5a = 14.7
Hz, J
5a,4 = 5.3
Hz, H-5a), 4.90 (ddd, 1 H, J
4,3 = 6.5
Hz, J
4,5a = 5.3 Hz, J
4,5b = 1.4
Hz, H-4), 5.34 (d, 1 H, J
4,3 = 6.5
Hz, H-3).
¹³C NMR (100 MHz,
CDCl3): d = 15.6 (CH3CH2),
23.4 (CH3CH2), 26.0, 27.2 [C(CH3)2],
66.4 (C-5), 73,1 (C-4), 81.7 (C-3); 112.8 [C(CH3)2],
144.0 (C-2). MS (IS): m/z = 218.0 [M + H]+.
ESI-HRMS: m/z [M + H]+ calcd
for C9H16NO3S: 218.0851; found:
218.0841.