Int J Sports Med 2010; 31(6): 382-388
DOI: 10.1055/s-0030-1248328
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

Effects of Repetitive Training at Low Altitude on Erythropoiesis in 400 and 800 m Runners

F. Frese1 , B. Friedmann-Bette1
  • 1Medical Clinic, University of Heidelberg, Department of Sports Medicine, Heidelberg, Germany
Further Information

Publication History

accepted after revision January 25, 2010

Publication Date:
18 March 2010 (online)

Abstract

Classical altitude training can cause an increase in total hemoglobin mass (THM) if a minimum “dose of hypoxia” is reached (altitude ≥2 000 m,≥3 weeks). We wanted to find out if repetitive exposure to mild hypoxia during living and training at low altitude (<2 000 m) for several weeks, often performed by elite athletes, might also have significant effects on erythropoiesis. THM, erythropoietin (EPO), soluble transferrin receptor (sTfR) and ferritin were determined in 8 elite runners before and after each of 2 training camps at low altitude interspersed by 3 weeks of sea-level training and at the same time points in a control group (CG) of 5 well-trained runners. EPO, sTfR and ferritin were also repeatedly measured during the altitude training camps. Repeated measures ANOVA revealed significant increases in EPO- and sTfR-levels during both training camps and a significant decrease in ferritin indicating enhanced erythropoietic stimulation during living and training at low altitude. Furthermore, significant augmentation of THM by 5.1% occurred in the course of the 2 altitude training camps. In conclusion, repetitive living and training at low altitude leads to a hypoxia-induced increase in erythropoietic stimulation in elite 400 m and 800 m runners and, apparently, might also cause a consecutive augmentation of THM.

References

  • 1 Bartsch P, Saltin B. General introduction to altitude adaptation and mountain sickness.  Scand J Med Sci Sports. 2008;  18 (S 01) 1-10
  • 2 Beidleman BA, Muza SR, Rock PB, Fulco CS, Lyons TP, Hoyt RW, Cymerman A. Exercise responses after altitude acclimatization are retained during reintroduction to altitude.  Med Sci Sports Exerc. 1997;  29 1588-1595
  • 3 Daniels J, Oldridge N. The effects of alternate exposure to altitude and sea level on world-class middle-distance runners.  Med Sci Sports Exerc. 1970;  2 107-112
  • 4 Friedmann B, Frese F, Menold E, Kauper F, Jost J, Bartsch P. Individual variation in the erythropoietic response to altitude training in elite junior swimmers.  Br J Sports Med. 2005;  39 148-153
  • 5 Friedmann B, Jost J, Rating T, Weller E, Werle E, Eckardt KU, Bärtsch P, Mairbäurl H. Effects of iron supplementation on total body hemoglobin during endurance training at moderate altitude.  Int J Sports Med. 1999;  20 78-85
  • 6 Friedmann-Bette B. Classical altitude training.  Scand J Med Sci Sports. 2008;  18 (S 01) 11-20
  • 7 Gore CJ, Hahn AG, Burge CM, Telford RD. VO2max and haemoglobin mass of trained athletes during high intensity training.  Int J Sports Med. 1997;  18 477-482
  • 8 Harriss DJ, Atkinson G. International Journal of Sports Medicine – Ethical Standards in Sport and Exercise Science Research.  Int J Sports Med. 2009;  30 701-702
  • 9 Heinicke K, Heinicke I, Schmidt W, Wolfarth B. A three-week traditional altitude training increases hemoglobin mass and red cell volume in elite biathlon athletes.  Int J Sports Med. 2005;  26 350-355
  • 10 Heinicke K, Prommer N, Cajigal J, Viola T, Behn C, Schmidt W. Long-term exposure to intermittent hypoxia results in increased hemoglobin mass, reduced plasma volume, and elevated erythropoietin plasma levels in man.  Eur J Appl Physiol. 2003;  88 535-543
  • 11 Koistinen PO, Rusko H, Irjala K, Rajamaki A, Penttinen K, Sarparanta VP, Karpakka J, Leppaluoto J. EPO, red cells, and serum transferrin receptor in continuous and intermittent hypoxia.  Med Sci Sports Exerc. 2000;  32 800-804
  • 12 Levine BD. Intermittent hypoxic training: fact and fancy.  High Alt Med Biol. 2002;  3 177-193
  • 13 Levine BD, Stray-Gundersen J. “Living high-training low” effect of moderate-altitude acclimatization with low-altitude training on performance.  J Appl Physiol. 1997;  83 102-112
  • 14 Pottgiesser T, Ahlgrim C, Ruthardt S, Dickhuth HH, Schumacher YO. Hemoglobin mass after 21 days of conventional altitude training at 1 816 m.  J Sci Med Sport. 2008; 
  • 15 Prommer N, Sottas PE, Schoch C, Schumacher YO, Schmidt W. Total hemoglobin mass – a new parameter to detect blood doping?.  Med Sci Sports Exerc. 2008;  40 2112-2118
  • 16 Rice L, Ruiz W, Driscoll T, Whitley CE, Tapia R, Hachey DL, Gonzales GF, Alfrey CP. Neocytolysis on descent from altitude: a newly recognized mechanism for the control of red cell mass.  Ann Intern Med. 2001;  134 652-656
  • 17 Robach P, Fulla Y, Westerterp KR, Richalet JP. Comparative response of EPO and soluble transferrin receptor at high altitude.  Med Sci Sports Exerc. 2004;  36 1493-1498
  • 18 Rusko HK, Tikkanen HO, Peltonen JE. Altitude and endurance training.  J Sports Sci. 2004;  22 928-944
  • 19 Schmidt W, Prommer N. The optimised CO-rebreathing method: a new tool to determine total haemoglobin mass routinely.  Eur J Appl Physiol. 2005;  95 486-495
  • 20 Schmidt W, Prommer N. Effects of various training modalities on blood volume.  Scand J Med Sci Sports. 2008;  18 (S 01) 57-69
  • 21 Stray-Gundersen J, Chapman RF, Levine BD. “Living high-training low” altitude training improves sea level performance in male and female elite runners.  J Appl Physiol. 2001;  91 1113-1120
  • 22 Svedenhag J, Piehl-Aulin K, Skog C, Saltin B. Increased left ventricular muscle mass after long-term altitude training in athletes.  Acta Physiol Scand. 1997;  161 63-70
  • 23 Wachsmuth NB, Völzke C, Prommer N, Schmidt-Trucksäss A, Eastwood A, Frese F, Madsen Ö, Spahl O, Stray-Gundersen J, Schmidt W. Hämoglobinmenge während und nach Höhentrainingsmaßnahmen.  Dtsch Z Sportmed. 2009;  60 213

Correspondence

Dr. Falko Frese

Medical Clinic

University of Heidelberg

Department of Sports Medicine

Im Neuenheimer Feld 710

69120 Heidelberg

Germany

Phone: +49/6221/568 251

Fax: +49/6221/565 363

Email: f.frese@web.de

    >