neuroreha 2010; 2(1): 28-32
DOI: 10.1055/s-0030-1248714
Schwerpunkt Gehen
© Georg Thieme Verlag KG Stuttgart · New York

Hintergrund: Central Pattern Generator – Hypothesen und Evidenz

Volker Dietz
Further Information

Publication History

Publication Date:
24 February 2010 (online)

Zusammenfassung

Die Fortbewegung des Menschen basiert auf der Aktivität neuronaler Schaltkreise im Rückenmark, dem Central Pattern Generator (CPG). Afferente Informationen von der Peripherie, also den Extremitäten, beeinflussen diesen. Umgekehrt selektioniert der CPG die afferenten Informationen (Reflexe) entsprechend den äußeren Erfordernissen. Sowohl der CPG als auch die Reflexe stehen unter der Kontrolle des Hirnstamms und des Gehirns. Bei zentralmotorischen Erkrankungen besteht eine fehlerhafte Nutzung afferenter Informationen durch den CPG in Kombination mit sekundären kompensatorischen Prozessen. Neuere Studien zeigen eine Plastizität dieser neuronalen Schaltkreise im Rückenmark nach einer Hirn- oder Rückenmarkläsion, die man in der Rehabilitationstherapie nutzen sollte.

Literatur

  • 01 Barbeau H , Fung J . The role of rehabilitation in the recovery of walking in the neurological population.  Curr Opin Neurol. 2001;  14 735-740
  • 02 Barbeau H , Rossignol S . Enhancement of locomotor recovery following spinal cord injury.  Curr Opin Neurol. 1994;  7 517-524
  • 03 Bartos M , Manor Y , Nadim F  et al. Coordination of fast and slow rhythmic neuronal circuits.  J Neurosci. 1999;  19 6650-6660
  • 04 Brandt T , Strupp M , Benson J . You are better off running than walking with acute vestibulopathy.  Lancet. 1999;  354 746
  • 05 Bussel B , Roby-Brami A , Azouvi P  et al. Myoclonus in a patient with spinal cord transsection. Possible involvement of the spinal stepping generator.  Brain. 1988;  111 1235-1245
  • 06 Bussel B , Roby-Brami A , Yakovleff A  et al. Late flexion reflex in paraplegic patients. Evidence for a spinal stepping generator.  Brain Res Bull. 1989;  22 53-56
  • 07 Calancie B , Lutton S , Broton J G. Central nervous system plasticity after spinal cord injury in man: interlimb reflexes and the influence of cutaneous stimulation.  Electroencephalogr Clin Neurophysiol. 1996;  101 304-315
  • 08 Calancie B , Needham-Shropshire B , Jacobs P  et al. Involuntary stepping after chronic spinal cord injury. Evidence for a central rhythm generator for locomotion in man.  Brain. 1994;  117 1143-1159
  • 09 Capaday C , Lavoie B A, Barbeau H  et al. Studies on the corticospinal control of human walking. I. Responses to focal transcranial magnetic stimulation of the motor cortex.  J Neurophysiol. 1999;  81 129-139
  • 10 Cazalets J R, Bertrand S . Coupling between lumbar and sacral motor networks in the neonatal rat spinal cord.  Eur J Neurosci. 2000;  12 2993-3002
  • 11 Curt A , Keck M E, Dietz V . Functional outcome following spinal cord injury: significance of motor-evoked potentials and ASIA scores.  Arch Phys Med Rehabil. 1998;  79 81-86
  • 12 De Leon R D et al. Retention of hindlimb stepping ability in adult spinal cats after the cessation of step training.  J Neurophysiol. 1999;  81 85-94
  • 13 Debaere F , Swinnen S P, Beatse E  et al. Brain areas involved in interlimb coordination: a distributed network.  Neuroimage. 2001;  14 947-958
  • 14 Dietz V . Human neuronal control of automatic functional movements: interaction between central programs and afferent input.  Physiol Rev. 1992;  72 33-69
  • 15 Dietz V . Do human bipeds use quadrupedal coordination?.  Trends in neurosciences. 2002;  25 462-467
  • 16 Dietz V . Proprioception and locomotor disorders.  Nat Rev Neurosci. 2002;  3 781-790
  • 17 Dietz V , Colombo G , Jensen L . Locomotor activity in spinal man.  Lancet. 1994;  344 1260-1263
  • 18 Dietz V , Colombo G , Jensen L  et al. Locomotor capacity of spinal cord in paraplegic patients.  Ann Neurol. 1995;  37 574-582
  • 19 Dietz V , Fouad K , Bastiaanse C M. Neuronal coordination of arm and leg movements during human locomotion.  Eur J Neurosci. 2001;  14 1906-1914
  • 20 Dietz V  et al. Changes in spinal reflex and locomotor activity after a complete spinal cord injury: a common mechanism?.  Brain. 2009;  132 2196-2205
  • 21 Dietz V , Muller R . Degradation of neuronal function following a spinal cord injury: mechanisms and countermeasures.  Brain. 2004;  127 2221-2231
  • 22 Dietz V , Muller R , Colombo G . Locomotor activity in spinal man: significance of afferent input from joint and load receptors.  Brain. 2002;  125 2626-2634
  • 23 Dietz V K, Nakazawa  , Wirz M  et al. Level of spinal cord lesion determines locomotor activity in spinal man.  Exp Brain Res. 1999;  128 405-409
  • 24 Dietz V , Quintern J , Sillem M . Stumbling reactions in man: significance of proprioceptive and pre-programmed mechanisms.  J Physiol. 1987;  386 149-163
  • 25 Dietz V  et al. Locomotor capacity and recovery of spinal cord function in paraplegic patients: a clinical and electrophysiological evaluation.  Electroencephalogr Clin Neurophysiol. 1998;  109 140-153
  • 26 Dietz V , Wirz M , Curt A  et al. Locomotor pattern in paraplegic patients: training effects and recovery of spinal cord function.  Spinal Cord. 1998;  36 380-390
  • 27 Dobkin B H, Harkema S , Requejo P  et al. Modulation of locomotor-like EMG activity in subjects with complete and incomplete spinal cord injury.  J Neurol Rehabil. 1995;  9 183-190
  • 28 Duysens J , Pearson K G. Inhibition of flexor burst generation by loading ankle extensor muscles in walking cats.  Brain Res. 1980;  187 321-332
  • 29 Duysens J , Van de Crommert H W. Neural control of locomotion; The central pattern generator from cats to humans.  Gait Posture. 1998;  7 131-141
  • 30 Edgerton V R, de Leon R D, Tillakaratne N  et al. Use-dependent plasticity in spinal stepping and standing. ; 72: 233–247.  Adv Neurol. 1997;  72 233-247
  • 31 Floeter M K, Sholomenko G N, Gossard J P et al. Disynaptic excitation from the medial longitudinal fasciculus to lumbosacral motoneurons: modulation by repetitive activation, descending pathways, and locomotion.  Exp Brain Res. 1993;  92 407-419
  • 32 Grillner S . Neurobiological bases of rhythmic motor acts in vertebrates.  Science. 1985;  228 143-149
  • 33 Grillner S , Deliagina T , Ekeberg O  et al. Neural networks that co-ordinate locomotion and body orientation in lamprey.  Trends in neurosciences. 1995;  18 270-279
  • 34 Grillner S , Wallen P , Hill R  et al. Ion channels of importance for the locomotor pattern generation in the lamprey brainstem-spinal cord.  J Physiol. 2001;  533 23-30
  • 35 Harkema S J, Hurley S L, Patel UK  et al. Human lumbosacral spinal cord interprets loading during stepping.  J Neurophysiol. 1997;  77 797-811
  • 36 Horak F B, Hlavacka F . Somatosensory loss increases vestibulospinal sensitivity.  J Neurophysiol. 2001;  86 575-585
  • 37 Lev-Tov A , Delvolve I . Pattern generation in non-limb moving segments of the mammalian spinal cord.  Brain Res Bull. 2000;  53 671-675
  • 38 MacKay-Lyons M . Central pattern generation of locomotion: a review of the evidence.  Phys Ther. 2002;  82 69-83
  • 39 Nathan P W, Smith M , Deacon P . Vestibulospinal, reticulospinal and descending propriospinal nerve fibres in man.  Brain. 1996;  119 1809-1833
  • 40 Pang M Y, Yang J F. The initiation of the swing phase in human infant stepping: importance of hip position and leg loading.  J Physiol. 2000;  528 389-404
  • 41 Perret C , Cabelguen J M. Main characteristics of the hindlimb locomotor cycle in the decorticate cat with special reference to bifunctional muscles.  Brain Res. 1980;  187 333-352
  • 42 Pohl M , Mehrholz J , Ritschel C  et al. Speed-dependent treadmill training in ambulatory hemiparetic stroke patients: a randomized controlled trial.  Stroke; a journal of cerebral circulation. 2002;  33 553-558
  • 43 Roby-Brami A , Bussel B . Long-latency spinal reflex in man after flexor reflex afferent stimulation.  Brain. 1987;  110 707-725
  • 44 Rossignol S , Dubuc R . Spinal pattern generation.  Curr Opin Neurobiol. 1994;  4 894-902
  • 45 Sanes J N, Mauritz K H, Dalakas M C et al. Motor control in humans with large-fiber sensory neuropathy. ; 4: 101–114.  Hum Neurobiol. 1985;  4 101-114
  • 46 Schomburg E D. Spinal sensorimotor systems and their supraspinal control.  Neurosci Res. 1990;  7 265-340
  • 47 Schubert M  et al. Corticospinal input in human gait: modulation of magnetically evoked motor responses.  Exp Brain Res. 1997;  115 234-246
  • 48 Schwab M E, Bartholdi D . Degeneration and regeneration of axons in the lesioned spinal cord.  Physiol Rev. 1996;  76 319-370
  • 49 Wannier T  et al. Arm to leg coordination in humans during walking, creeping and swimming activities.  Exp Brain Res. 2001;  141 375-379
  • 50 Wernig A , Muller S . Laufband locomotion with body weight support improved walking in persons with severe spinal cord injuries.  Paraplegia. 1992;  30 229-238
  • 51 Wernig A  et al. Laufband therapy based on “rules of spinal locomotion”& is effective in spinal cord injured persons.  Eur J Neurosci. 1995;  7 823-829
  • 52 Whelan P J, Pearson K G. Plasticity in reflex pathways controlling stepping in the cat.  J Neurophysiol. 1997;  78 1643-1650
  • 53 Wirz M , Colombo G , Dietz V . Long term effects of locomotor training in spinal humans.  J Neurol Neurosurg Psychiatry . 2001;  71 93-96
  • 54 Yamaguchi T . Muscle activity during forelimb stepping in decerebrate cats.  Jpn J Physiol. 1992;  42 489-499

Prof. Dr. Volker DietzFRCP

Paraplegikerzentrum Universitätsklinik Balgrist

Forchstr. 340

8008 Zürich

Schweiz

Email: vdietz@paralab.balgrist.ch

    >