Abstract
Rasta resin-PPh3 , a new heterogeneous polystyrene-based
phosphine, has been synthesized and used in one-pot Wittig olefination
reactions of aldehydes. In these reactions an excess of rasta resin-PPh3 was
used for the in situ generation of the phosphorane reactant and
allowed for isolation of a high yield of very pure alkene product
after only filtration and solvent removal. The excellent results
obtained in this study are attributed to the flexible nature of
the rasta resin structure, which makes it less dependant upon swelling
than other heterogeneous polystyrene materials previously used to
support phosphine reagents in Wittig reactions.
Key words
polymer-supported reagent - polystyrene - phosphine - phosphorane - Wittig reaction
References and Notes
<A NAME="RY01010ST-1A">1a </A>
Wittig G.
Geissler G.
Liebigs
Ann. Chem.
1953,
580:
44
<A NAME="RY01010ST-1B">1b </A>
Wittig G.
Schollkopf U.
Chem. Ber.
1954,
87:
1318
<A NAME="RY01010ST-2">2 </A>
Constable DJC.
Dunn PJ.
Hayler JD.
Humphrey
GR.
Leazer JL.
Linderman RJ.
Lorenz K.
Manley J.
Pearlman BA.
Wells A.
Zaks A.
Zhang TY.
Green Chem.
2007,
9:
411
For the use of a phosphine catalyst
in Wittig reactions, see:
<A NAME="RY01010ST-3A">3a </A>
O’Brien CJ.
Tellez JL.
Nixon ZS.
Kang LJ.
Carter AL.
Kunkel SR.
Przeworski KC.
Chass GA.
Angew. Chem. Int. Ed.
2009,
48:
6836
<A NAME="RY01010ST-3B">3b </A>
Marsden SP.
Nature Chem.
2009,
1:
685
For the use of arsine or telluride
catalysts in Wittig reactions, see:
<A NAME="RY01010ST-4A">4a </A>
Shi L.
Wang W.
Wang Y.
Huang Y.-Z.
J. Org. Chem.
1989,
54:
2027
<A NAME="RY01010ST-4B">4b </A>
Huang Z.-Z.
Ye S.
Xia W.
Yu Y.-H.
Tang Y.
J. Org.
Chem.
2002,
67:
3096
<A NAME="RY01010ST-4C">4c </A>
Huang Z.-Z.
Tang Y.
J. Org. Chem.
2002,
67:
5320
<A NAME="RY01010ST-4D">4d </A>
Cao P.
Li C.-Y.
Kang Y.-B.
Xie Z.
Sun X.-L.
Tang Y.
J. Org. Chem.
2007,
72:
6628
<A NAME="RY01010ST-5A">5a </A>
Camps F.
Castells J.
Font J.
Vela F.
Tetrahedron Lett.
1971,
1715
<A NAME="RY01010ST-5B">5b </A>
McKinley SV.
Rakshys JW.
J.
Chem. Soc., Chem. Commun.
1972,
134
<A NAME="RY01010ST-5C">5c </A>
Heitz W.
Michels R.
Angew. Chem., Int. Ed. Engl.
1972,
11:
298
<A NAME="RY01010ST-5D">5d </A>
Clarke SD.
Harrison CR.
Hodge P.
Tetrahedron Lett.
1980,
21:
1375
<A NAME="RY01010ST-5E">5e </A>
Akelah A.
Eur.
Polym. J.
1982,
18:
559
<A NAME="RY01010ST-5F">5f </A>
Bernard M.
Ford WT.
Nelson EC.
J.
Org. Chem.
1983,
48:
3164
<A NAME="RY01010ST-6">6 </A>
Westman J.
Org.
Lett.
2001,
3:
3745
<A NAME="RY01010ST-7A">7a </A>
Wu J.
Yue C.
Synth.
Commun.
2006,
36:
2939 ;
and references cited therein
<A NAME="RY01010ST-7B">7b </A>
Choudary BM.
Mahendar K.
Kantam ML.
Ranganath KVS.
Athar T.
Adv. Symth. Catal.
2006,
348:
1977
<A NAME="RY01010ST-7C">7c </A>
El-Batta A.
Jiang C.
Zhao W.
Anness R.
Cooksy AL.
Bergdahl M.
J. Org. Chem.
2007,
72:
5244
For cross-linked polymers, see:
<A NAME="RY01010ST-8A">8a </A>
Kwok M.
Choi W.
He HS.
Toy PH.
J. Org. Chem.
2003,
68:
9831
<A NAME="RY01010ST-8B">8b </A>
Zhao LJ.
He HS.
Shi M.
Toy PH.
J.
Comb. Chem.
2004,
6:
680
For non-cross-linked polymers, see:
<A NAME="RY01010ST-9A">9a </A>
Harned AM.
He HS.
Toy PH.
Flynn DL.
Hanson PR.
J. Am. Chem. Soc.
2005,
127:
52
<A NAME="RY01010ST-9B">9b </A>
He HS.
Yan JJ.
Shen R.
Zhuo S.
Toy PH.
Synlett
2006,
563
<A NAME="RY01010ST-9C">9c </A>
Kwong CK.-W.
Huang R.
Zhang M.
Shi M.
Toy PH.
Chem. Eur. J.
2007,
13:
2369
<A NAME="RY01010ST-10">10 </A>
Zhao L.-J.
Kwong CK.-W.
Shi M.
Toy PH.
Tetrahedron
2005,
61:
12026
<A NAME="RY01010ST-11">11 </A>
Bernard M.
Ford WT.
J. Org. Chem.
1983,
48:
326
<A NAME="RY01010ST-12">12 </A>
Lu J.
Toy PH.
Chem. Rev.
2009,
109:
815
<A NAME="RY01010ST-13A">13a </A>
Hodges JC.
Harikrishnan LS.
Ault-Justus S.
J.
Comb. Chem.
2000,
2:
80
<A NAME="RY01010ST-13B">13b </A>
Lindsley CW.
Hodges
JC.
Filzen GF.
Watson BM.
Geyer AG.
J.
Comb. Chem.
2000,
2:
550
<A NAME="RY01010ST-13C">13c </A>
McAlpine SR.
Lindsley CW.
Hodges JC.
Leonard DM.
Filzen GF.
J. Comb. Chem.
2001,
3:
1
<A NAME="RY01010ST-13D">13d </A>
Wisnoski DD.
Leister WH.
Strauss
KA.
Zhao Z.
Lindsley CW.
Tetrahedron Lett.
2003,
44:
4321
<A NAME="RY01010ST-13E">13e </A>
Fournier D.
Pascual S.
Montembault V.
Haddleton DM.
Fontaine L.
J.
Comb. Chem.
2006,
8:
522
<A NAME="RY01010ST-13F">13f </A>
Fournier D.
Pascual S.
Montembault V.
Fontaine L.
J. Polym. Sci. A: Polym. Chem.
2006,
44:
5316
<A NAME="RY01010ST-13G">13g </A>
Pawluczyk JM.
McClain RT.
Denicola C.
Mulhearn JJ.
Rudd DJ.
Lindsley CW.
Tetrahedron Lett.
2007,
48:
1497
<A NAME="RY01010ST-13H">13h </A>
Chen G.
Tao L.
Mantovani G.
Geng J.
Nystroem D.
Haddleton DM.
Macromolecules
2007,
40:
7513
<A NAME="RY01010ST-14A">14a </A>
Toy PH.
Janda KD.
Tetrahedron
Lett.
1999,
40:
6329
<A NAME="RY01010ST-14B">14b </A>
Toy PH.
Reger TS.
Janda KD.
Aldrichimica Acta
2000,
33:
87
<A NAME="RY01010ST-14C">14c </A>
Toy PH.
Reger TS.
Garibay P.
Garno JC.
Malikayil JA.
Liu G.-Y.
Janda KD.
J. Comb. Chem.
2001,
3:
117
<A NAME="RY01010ST-14D">14d </A>
Choi MKW.
Toy
PH.
Tetrahedron
2004,
60:
2903
<A NAME="RY01010ST-15">15 </A>
See Supporting Information for details.
<A NAME="RY01010ST-16">16 </A>
General Procedure
for Wittig Reactions
To a solution of the aldehyde
(0.5 mmol) and the alkyl halide (0.75 mmol) in the appropriate solvent
(5 mL), was added RR-PPh3
(1.0
mmol), followed by Et3 N (1.0 mmol). The reaction mixture
was stirred at the indicated temperature until TLC analysis indicated
that the aldehyde was completely consumed, and then filtered through
a plug of silica gel. After washing the polymer with CH2 Cl2 (2 × 50 mL)
the combined filtrate was concentrated in
vacuo to afford pure product. All alkene products were characterized by ¹ H
NMR and ¹³ C NMR spectroscopy. Steroeoisomeric ratios
were determined by ¹ H NMR spectroscopy.
<A NAME="RY01010ST-17A">17a </A>
Yano T.
Kuroboshi M.
Tanaka H.
Tetrahedron Lett.
2010,
51:
698
<A NAME="RY01010ST-17B">17b </A>
Yano T.
Hoshimo M.
Kuroboshi M.
Tanaka H.
Synlett
2010,
801