Synlett 2010(13): 2037-2040  
DOI: 10.1055/s-0030-1258534
CLUSTER
© Georg Thieme Verlag Stuttgart ˙ New York

Microwave- or Microreactor-Assisted Conversion of Furfuryl Alcohols into 4-Hydroxy-2-cyclopentenones

Kathrin Ulbrich, Peter Kreitmeier, Oliver Reiser*
Institut für Organische Chemie der Universität Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
Fax: +49(941)9434121; e-Mail: oliver.reiser@chemie.uni-regensburg.de;
Further Information

Publication History

Received 14 June 2010
Publication Date:
28 July 2010 (online)

Abstract

The conversion of a variety of furfuryl alcohols, derived from renewable non edible resources such as bran, into 4-hydroxy-2-cyclopentenones was accomplished using microwave irradiation. In subcritical water (220 ˚C, 15.5 bar) without the need for any catalyst the reaction proceeds approximately two orders of magnitude faster with up to twice the yield compared to methods previously reported that apply conventional heating techniques. For the parent furfuryl alcohol the process could be transferred to a microreactor, allowing the synthesis of 4-hydroxy-2-cyclopentenone in a continuous flow system on multigram scale.

    References and Notes

  • 1 Diercks R. Arndt J.-D. Freyer S. Geier R. Machhammer O. Schwartze J. Volland M. Chem. Eng. Technol.  2008,  31:  631 
  • 2a Weisser R. Yue WM. Reiser O. Org. Lett.  2005,  7:  5353 
  • 2b Jezek E. Schall A. Kreitmeier P. Reiser O. Synlett  2005,  915 
  • 2c Schinnerl M. Bohm C. Seitz M. Reiser O. Tetrahedron: Asymmetry  2003,  14:  765 
  • 2d Nosse B. Chhor RB. Jeong WB. Böhm C. Reiser O. Org. Lett.  2003,  5:  941 
  • 2e Chhor RB. Nosse B. Sorgel S. Bohn C. Seitz M. Reiser O. Chem. Eur. J.  2003,  9:  260 
  • 2f Böhm C. Reiser O. Org. Lett.  2001,  3:  1315 
  • 2g Böhm C. Schinnerl M. Bubert C. Zabel M. Labahn T. Parisini E. Reiser O. Eur. J. Org. Chem.  2000,  2955 
  • 3 Rodrigues F. Chem. Eng. Technol.  2008,  31:  883 
  • 4 Zeitsch KJ. inventors; DE 38 42 825  A1. 
  • Selected examples:
  • 5a Ellison A. Synthesis  1973,  397 
  • 5b Harre M. Raddatz P. Walenta R. Winterfeldt E. Angew. Chem., Int. Ed. Engl.  1982,  21:  480 
  • 5c Dyatkina N. Costisella B. Theil F. von Janta-Lipinski M. Tetrahedron Lett.  1994,  35:  1961 
  • 5d Borthwick AD. Biggadike K. Tetrahedron  1992,  50:  571 
  • 5e Knight SD. Overman LE. Pairaudeau G. J. Am. Chem. Soc.  1995,  117:  5776 
  • 5f Collins PW. Djuric SW. Chem. Rev.  1993,  93:  1533 
  • 5g Mulzer J. Giester G. Gilbert M. Helv. Chim. Acta  2005,  88:  1560 
  • 5h Kalidindi S. Jeong WB. Schall A. Bandichhor R. Nosse B. Reiser O. Angew. Chem. Int. Ed.  2007,  46:  6361 
  • 5i Mihara H. Sohtome Y. Matsunaga S. Shibasaki M. Chem. Asian J.  2008,  3:  359 
  • 5j Harikrishna M. Mohan HR. Dubey PK. Subbaraju GV. Synth. Commun.  2009,  39:  2763 
  • 5k Nicolaou KC. Tang YF. Wang JH. Angew. Chem. Int. Ed.  2009,  48:  3449 
  • 6a Krüger G. Harde C. Bohlmann F. Tetrahedron Lett.  1985,  26:  6027 
  • 6b Curran TT. Hay DA. Koegel CP. Tetrahedron  1997,  53:  1983 
  • 6c Basra SK. Drew MGB. Mann J. Kane PD. J. Chem. Soc., Perkin Trans.  2000,  1:  3592 
  • 6d Ghorpade SR. Bastawade KB. Gokhale DV. Shinde PD. Mahajan VA. Kalkote UR. Ravindranathan T. Tetrahedron: Asymmetry  1999,  10:  4115 
  • 6e Morgan BS. Hoenner D. Evans P. Roberts SM. Tetrahedron: Asymmetry  2004,  15:  2807 
  • 6f Laumen K, and Stuart G. inventors; WO 055874  A1. 
  • 6g Nanni M, Ta-Machi H, and . inventors; JP  57-62236. 
  • 6h Piancatelli G. D’Auria M. D’Onofrio F. Synthesis  1994,  867 
  • Leading Reviews:
  • 7a Kappe CO. Angew. Chem. Int. Ed.  2004,  43:  6250 
  • 7b Kappe CO. Chimia  2006,  60:  308 
  • 7c Kappe CO. Chem. Soc. Rev.  2008,  37:  1127 
  • 8 Dallinger D. Kappe CO. Chem. Rev.  2007,  107:  2563 
  • Leading Reviews:
  • 9a Jähnisch K. Hessel V. Löwe H. Baerns M. Angew. Chem. Int. Ed.  2004,  43:  406 
  • 9b Hornung CH. Hallmark B. Baumann M. Baxendale IR. Ley SV. Hester P. Clayton P. Mackley MR. Ind. Eng. Chem. Res.  2010,  49:  4576 
  • 9c Illg T. Lob P. Hessel V. Bioorg. Med. Chem.  2010,  18:  3707 
  • 11a Piancatelli G. D’Auria M. D’Onofrio F. Synthesis  1994,  867 ; and references cited therein
  • 11b Moreau C. Belgacem M. Gandini A. Top. Catal.  2004,  27:  11 
  • 11c Bertarione S. Bonino F. Cesano F. Damin A. Scarano D. Zecchina A. J. Phys. Chem.  2008,  112:  2580 
  • 11d D’Auria M. Heterocycles  2000,  52:  185 
10

Irradiation of pure water at 300 W, a maximum temperature of 180 ˚C and 9 bar of pressure is reached.