Subscribe to RSS
DOI: 10.1055/s-0030-1259095
Total Synthesis of Rutaecarpine and Analogues by Tandem Azido Reductive Cyclization Assisted by Microwave Irradiation
Publication History
Publication Date:
10 December 2010 (online)

Abstract
The total synthesis of rutaecarpine and several analogues has been developed by using an azido reductive cyclization process starting from substituted azido benzoic acids. The intramolecular azido reductive cyclization step was performed with triphenylphosphine or Ni2B in HCl-MeOH (1 M) using microwave irradiation. This synthetic route is amenable for the generation of a library of quinazolinone compounds.
Key words
quinazolinones - β-carbolines - azido-reductive cyclization - Ni2B - microwave irradiation
- 1
Mhaske SB.Argade P. Tetrahedron 2005, 62: 9787 - 2
Takaya Y.Tasaka H.Chiba T.Uwai K.Tanitsu M.-A.Kim H.-S.Wataya Y.Miura M.Takeshita M.Oshima Y. J. Med. Chem. 1999, 42: 3163 - 3a
Gupta CM.Bhaduri AP.Khanna NM. J. Med. Chem. 1968, 11: 392Reference Ris Wihthout Link - 3b
Welch WM.Ewing FE.Huang J.Menniti FS.Pagnozzi MJ.Kelly K.Seymoyr PA.Guanowsky V.Guhan S.Guinn MR.Critchett D.Lazzaro J.Ganong AH.DeVries KM.Staigers TL.Chenard BL. Bioorg. Med. Chem. Lett. 2001, 11: 177Reference Ris Wihthout Link - 4
Kung P.-P.Casper MD.Cook KL.Wilson-Lingard L.Risen LM.Vickers TA.Ranken R.Blyn LB.Wyatt R.Cook PD.Ecker DJ. J. Med. Chem. 1999, 42: 4705 - 5
Malamas MS.Millen J. J. Med. Chem. 1991, 34: 1492 - 6
Fetter J.Czuppo T.Hornyak G.Feller A. Tetrahedron 1991, 47: 9393 - 7a
Padala SR.Padi PR.Thipireddy V. Heterocycles 2003, 60: 183Reference Ris Wihthout Link - 7b
Larksarp C.Alper H. J. Org. Chem. 2000, 65: 2773Reference Ris Wihthout Link - 7c
Wang L.Xia J.Qin F.Qian C.Sun J. Synthesis 2003, 1241Reference Ris Wihthout Link - 7d
Dabiri M.Salehi P.Khajavi MS.Mohammadi AA. Heterocycles 2004, 63: 1417Reference Ris Wihthout Link - 7e
Bhat BA.Sahu DP. Synth. Commun. 2004, 34: 2169Reference Ris Wihthout Link - 7f
Connoly DJ.Cusack D.O’Sullivan TP.Guiry PJ. Tetrahedron 2005, 61: 10153Reference Ris Wihthout Link - 7g
Potewar TM.Nadaf RN.Daniel T.Lahoti RJ.Srinivasan KV. Synth. Commun. 2005, 35: 231Reference Ris Wihthout Link - 7h
Liu J.-F.Lee J.Dalton AM.Bi G.Yu L.Baldino CM.McElory E.Brown M. Tetrahedron Lett. 2005, 46: 1241Reference Ris Wihthout Link - 8a
Wu SN.Lo YK.Chen H.Li HF.Chiang HT. Neuropharmacology 2001, 41: 834Reference Ris Wihthout Link - 8b
Sheu JR.Hung WC.Wu CH.Lee YM.Yen MH. Br. J. Haematol. 2000, 110: 110Reference Ris Wihthout Link - 8c
Wang GJ.Shan J.Pang PKT.Yang MCM.Chou CJ.Chen CF. J. Pharmacol. Exp. Ther. 1996, 270: 1016Reference Ris Wihthout Link - 9
Don MJ.Lewis DFV.Wang SY.Tsai MW.Ueng YF. Bioorg. Med. Chem. Lett. 2003, 13: 2535 - 10
Baruah B.Dasu K.Valtilingam B.Mamnoor P.Venkata PP.Rajagopal S.Yeleswarapu KR. Bioorg. Med. Chem. 2004, 12: 1991 - 11
Chang HW.Kim SI.Jung H.Jahng Y. Heterocycles 2003, 60: 1359 - 12
Asahina Y. Acta Phytochim. 1922, 1: 67 - 13
Kamikado T.Murakoshi S.Tamura S. Agric. Biol. Chem. 1978, 42: 1515 - 14
Bergman J. The Alkaloids, In The Quinazolinocarboline alkaloids Vol. 21:Brossi AR. Academic Press; New York: 1983. p.29-54 - 15a
Ikuta A.Urabe H.Nakamura T. J. Nat. Prod. 1998, 61: 1012Reference Ris Wihthout Link - 15b
Ikuta A.Nakamura T.Urabe H. Phytochemistry 1998, 48: 285Reference Ris Wihthout Link - 16
Michael JP. Nat. Prod. Rep. 1999, 16: 697 - 17
Chen AL.Chen KK. J. Am. Pharm. Assoc. 1933, 22: 716 - 18a
King CL.Kong YC.Wong NS.Yeung HW.Fong HHS.Sankawa U. J. Nat. Prod. 1980, 43: 577Reference Ris Wihthout Link - 18b
Gillner M.Bergman J.Cambillau C.Gustafsson J.-A. Carcinogenesis 1989, 10: 651Reference Ris Wihthout Link - 18c
Rannug U.Sjógren M.Rannug A.Gillner M.Toftgard R.Gustafsson JA.Rosenkranz H.Klopman G. Carcinogenesis 1991, 12: 2007Reference Ris Wihthout Link - 18d
Matsuda H.Yoshikawa M.Ko S.Iinuma M.Kubo M. Nat. Med. 1998, 52: 203Reference Ris Wihthout Link - 18e
Hibino S.Choshi T. Nat. Prod. Rep. 2001, 18: 66Reference Ris Wihthout Link - 19
Asahina Y.Manske RHF.Robinson R. J. Chem. Soc. 1927, 1708 - 20
Mhaske SB.Argade NP. Tetrahedron 2004, 60: 3417 ; and references cited therein - 21a
Kökösi J.Hermecz I.Szász G.Mészáros Z. Tetrahedron Lett. 1981, 22: 4861Reference Ris Wihthout Link - 21b
Kökösi J.Szász G.Hermecz I. Tetrahedron Lett. 1992, 33: 2995Reference Ris Wihthout Link - 21c
Lee SH.Kim SI.Park JG.Lee ES.Jahng Y. Heterocycles 2001, 55: 1555Reference Ris Wihthout Link - 21d
Chang HW.Kim SI.Jung H.Jahng Y. Heterocycles 2003, 60: 1359Reference Ris Wihthout Link - 21e
Chavan SP.Sivappa R. Tetrahedron Lett. 2004, 45: 997Reference Ris Wihthout Link - 22
Lee ES.Park J.-G.Jahng Y. Tetrahedron Lett. 2003, 44: 1883 - 23
Pereira M.-F.Picot L.Guillon J.Léger J.-M.Jarry CR.Thiéry V.Besson T. Tetrahedron Lett. 2005, 46: 3445 - 24a
Kametani T.Higa T.Von Loc C.Ihara M.Koizumi M.Fukumoto K. J. Am. Chem. Soc. 1976, 98: 6186Reference Ris Wihthout Link - 24b
Kametani T.Von Loc C.Higa T.Koizumi M.Ihara M.Fukumoto K. J. Am. Chem. Soc. 1977, 99: 2306Reference Ris Wihthout Link - 24c
Bergman J.Bergman S. J. Org. Chem. 1985, 50: 1246Reference Ris Wihthout Link - 24d
Mohanta PK.Kim K. Tetrahedron Lett. 2002, 43: 3993Reference Ris Wihthout Link - 24e
Harayama T.Hori A.Serban G.Morikami Y.Matsumoto T.Abe H.Takeuchi Y. Tetrahedron 2004, 60: 10645Reference Ris Wihthout Link - 25
Lee CS.Liu CK.Chiang YL.Cheng YY. Tetrahedron Lett. 2008, 49: 481 - 26a
Kamal A.Markandeya N.Shankaraiah N.Reddy ChR.Prabhakar S.Reddy ChS.Eberlin MN.Santos LS. Chem. Eur. J. 2009, 15: 7214Reference Ris Wihthout Link - 26b
Shankaraiah N.Markandeya N.Moraga ME.Arancibia C.Kamal A.Santos LS. Synthesis 2009, 2163Reference Ris Wihthout Link - 26c
Kamal A.Shankaraiah N.Markandeya N.Reddy ChS. Synlett 2008, 1297Reference Ris Wihthout Link - 26d
Kamal A.Devaiah V.Reddy KL.Shankaraiah N. Adv. Synth. Catal. 2006, 348: 249Reference Ris Wihthout Link - 26e
Kamal A.Shankaraiah N.Reddy KL.Devaiah V. Tetrahedron Lett. 2006, 47: 4253Reference Ris Wihthout Link - 26f
Kamal A.Devaiah V.Shankaraiah N.Reddy KL. Synlett 2006, 2609Reference Ris Wihthout Link - 26g
Kamal A.Shankaraiah N.Devaiah V.Reddy KL. Tetrahedron Lett. 2006, 47: 9025Reference Ris Wihthout Link - 26h
Kamal A.Ramana KV.Rao MV. J. Org. Chem. 2001, 66: 997Reference Ris Wihthout Link - 26i
Kamal A.Damayanthi Y.Reddy BSN.Lakshminarayana B.Reddy BSP. Chem. Commun. 1997, 1015Reference Ris Wihthout Link - 27a
Kappe CO. Angew. Chem. Int. Ed. 2004, 43: 6250Reference Ris Wihthout Link - 27b
Lew A.Krutzik PO.Hart ME.Chamberlin AR. J. Comb. Chem. 2002, 4: 95Reference Ris Wihthout Link - 27c
Kaddar H.Hamelin J.Benhaoua H. J. Chem. Res. 1999, 718Reference Ris Wihthout Link - 28a
Silva WA.Rodrigues MT.Shankaraiah N.Ferreira RB.Andrade CKZ.Pilli RA.Santos LS. Org. Lett. 2009, 11: 3238Reference Ris Wihthout Link - 28b
Shankaraiah N.Santos LS. Tetrahedron Lett. 2009, 50: 520Reference Ris Wihthout Link - 28c
Shankaraiah N.Silva WA.Andrade CKZ.Santos LS. Tetrahedron Lett. 2008, 49: 4289Reference Ris Wihthout Link
References and Notes
Coupling reaction procedure for {2-azidophenyl)-(1-methylene-3,4-dihydro-1H-pyrido[3,4-b]indol-2 (9H)-yl}methanone (5a): To a stirred solution of 3 (0.250 g, 1.53 mmol) in CH2Cl2 (10 mL) was added Et3N (0.22 mL, 1.63 mmol) dropwise at 0 ˚C over 10 min, then 2-azidobenzoyl chloride (0.295 g, 1.62 mmol) dissolved in CH2Cl2 (5 mL) was added at the same temperature. The reaction was brought to r.t. and stirred for another 2 h. After completion of the reaction, the solvent was evaporated and extracted with CH2Cl2 (3 × 20 mL), washed with aqueous NaHCO3 followed by brine, separated, and dried over anhydrous Na2SO4. The combined organic extracts were evaporated under reduced pressure and further purified by column chromatography with EtOAc-hexane (1:1) as eluent to afford 5a in 84% yield as a white solid; mp 86-88 ˚C. IR (KBr): 3381, 2105, 1638, 1415 cm-¹; ¹H NMR (300 MHz, CDCl3): δ = 8.12 (br s, 1 H), 7.53 (d, J = 7.55 Hz, 1 H), 7.36-7.43 (m, 2 H), 7.32 (d, J = 7.55 Hz, 1 H), 7.20-7.25 (m, 1 H), 7.11-7.16 (m, 3 H), 4.93 (s, 1 H), 4.07 (s, 1 H), 4.00 (t, J = 8.58, 9.09 Hz, 2 H), 3.24 (t, J = 8.08 Hz, 2 H); ¹³C NMR (75 MHz, CDCl3): δ = 167.6, 136.9, 132.3, 132.1, 130.3, 129.1, 128.2, 126.7, 125.1, 124.7, 123.5, 119.9, 119.0, 118.4, 112.0, 111.1, 101.8, 41.1, 29.6; HRMS (ESI): m/z [M + Na]+ calcd for C19H15N5O: 352.1174; found: 352.1182.
30Oxidation reaction procedure for 2-(2-azidobenzoyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-one (6a): To a stirred solution of 5a (0.400 g, 1.13 mmol) in anhydrous acetone (20 mL) was added KMnO4 (0.264 g, 1. 70 mmol) at r.t. and the mixture was stirred for 12 h. The solvent was evaporated under reduced pressure and the reaction mixture was diluted with EtOAc (40 mL) and filtered through Celite. The organic layer was washed with aqueous NaHCO3 followed by brine and dried over anhydrous Na2SO4. After filtration and evaporation, the crude product was purified by column chromatography, eluting with EtOAc-hexane (7:3) to afford 6a in 67% yield as a white solid; mp 87-90 ˚C. IR (KBr): 3421, 2111, 1697, 1634 cm-¹; ¹H NMR (400 MHz, CDCl3): δ = 8.18 (br s, 1 H), 7.84 (d, J = 7.84 Hz, 1 H), 7.63-7.59 (m, 2 H), 7.38-7.32 (m, 1 H), 7.23-7.20 (m, 2 H), 7.18 (d, J = 7.55 Hz, 1 H), 7.16-7.19 (m, 1 H), 4.43 (br, 2 H), 3.24 (t, J = 8.10 Hz, 2 H); ¹³C NMR (100 MHz, CDCl3): δ = 167.9, 161.2, 142.6, 137.8, 132.6, 130.1, 129.5, 128.1, 126.5, 124.8, 124.6, 123.4, 119.8, 118.9, 118.0, 101.9, 41.9, 21.7; HRMS (ESI): m/z [M]+ calcd for C18H13N5O2Na: 354.3186; found: 354.3207.
31Typical procedure for preparation
of rutaecarpine (1a): A mixture of 6a (0.100 g, 0.302 mmol) in MeOH (2.0 mL)
and Ni2B (0.114 g, 0.906 mmol) and 1.0 M HCl (1.0 mL)
in a glass tube was placed in a microwave reactor (CEM Discovery
LabMate) and irradiated at 70 W for 2 min, during
which time the temperature was kept at 52 ˚C with cooling.
The reaction mixture was brought to ambient temperature and the
solvent was evaporated, the residue was neutralized with saturated
aqueous 5% NaHCO3 solution, and then extracted
with EtOAc (3 × 25 mL). The combined organic
phases were washed with brine, dried over Na2SO4, filtered
and evaporated under reduced pressure. The crude product thus obtained
was purified by column chroma-tography on silica (60-120
mesh) to afford the final compound 1a (0.072
g, 90%); mp 254-255 ˚C. ¹H
NMR (400 MHz, CDCl3): δ = 9.25 (br
s, 1 H), 8.33 (dd, J = 1.23, 7.85 Hz,
1 H), 7.62-7.74 (m, 3 H), 7.43-7.69
(m, 2 H), 7.35 (dt, J = 1.22,
6.85 Hz, 1 H), 7.20 (t, J = 8.44 Hz,
1 H), 4.57 (t, J = 6.96 Hz,
2 H), 3.25 (t, J = 6.95 Hz,
2 H); ¹³C NMR (100 MHz, CDCl3): δ = 161.6,
147.5, 144.9, 138.2, 134.3, 127.2, 126.6, 126.1, 125.6, 125.5, 121.3,
120.6, 120.1, 118.3, 112.1, 19.6, 41.1, 20.2; HRMS (ESI): m/z [M + H]+
˙
calcd for C18H13N3O:
287.1054; found: 287.1057.
Euxylophoricine A (1b): Yield: 0.043 g (82%); mp
293-295 ˚C; ¹H NMR
(300 MHz, CDCl3): δ = 9.25 (br s, 1 H), 7.65
(s, 1 H), 7.63 (d, J = 8.1 Hz,
1 H), 7.44 (d, J = 8.1 Hz, 1 H),
7.35 (dd, J = 7.8,
8.1 Hz, 1 H), 7.20 (t, J = 7.8 Hz, 1 H),
7.06 (s, 1 H), 4.60 (t, J = 7.0 Hz,
2 H), 4.01 (s, 3 H), 3.99 (s, 3 H), 3.24
(t, J = 7.0 Hz,
2 H); ¹³C NMR (75 MHz, CDCl3): δ = 161.1,
155.1, 148.7, 143.9, 143.6, 138.2, 127.3, 125.7, 125.3, 120.6, 119.9,
117.6, 114.5, 111.9, 107.1, 106.4, 56.3, 56.2, 41.1, 19.6; HRMS: m/z [M + H]+
˙
calcd for C20H17N3O3:
347.1263; found: 347.1266.
Euxylophoricine C (1c): Yield: 0.041 g (80%); mp
307-309 ˚C; ¹H NMR
(300 MHz, CDCl3): δ = 9.10 (br s, 1 H), 7.65
(s, 1 H), 7.64 (d, J = 6.95 Hz,
1 H), 7.44 (d, J = 6.92 Hz,
1 H), 7.36 (t, J = 6.95 Hz,
1 H), 7.20 (t, J = 6.9 Hz,
1 H), 7.06 (s, 1 H), 6.10 (s, 2 H), 4.57
(t, J = 6.9 Hz,
2 H), 3.27 (t, J = 6.9 Hz,
2 H); ¹³C NMR (75 MHz, CDCl3): δ = 160.9,
153.5, 147.1, 143.9, 143.8, 138.1, 127.2, 125.7, 125.4, 120.6, 120.0,
117.6, 116.1, 111.9, 105.9, 104.2, 102.5, 41.8, 19.8; HRMS: m/z [M + H]+
˙
calcd for C19H13N3O3:
331.0955; found: 331.0961.