References and Notes
For recent reviews on organocatalysis,
see:
<A NAME="RY01910ST-1A">1a</A>
Berkessel A.
Gröger H.
Asymmetric
Organocatalysis
Wiley-VCH;
Weinheim:
2005.
<A NAME="RY01910ST-1B">1b</A>
Dalko PI.
Enantioselective Organocatalysis
Wiley-VCH;
Weinheim:
2007.
<A NAME="RY01910ST-1C">1c</A> Special issue on organocatalysis: Chem.
Rev.
2007,
107:
5413 ;
guest editor B. List
<A NAME="RY01910ST-1D">1d</A>
Pellissier H.
Tetrahedron
2007,
63:
9267
<A NAME="RY01910ST-1E">1e</A>
De Figueiredo RM.
Christmann M.
Eur.
J. Org. Chem.
2007,
2575
<A NAME="RY01910ST-1F">1f</A>
Enders D.
Grondal C.
Hüttl MRM.
Angew. Chem. Int. Ed.
2007,
46:
1570
<A NAME="RY01910ST-1G">1g</A>
Dondoni A.
Massi A.
Angew. Chem. Int. Ed.
2008,
47:
4638
<A NAME="RY01910ST-1H">1h</A>
Enders D.
Narine AA.
J. Org. Chem.
2008,
73:
7857
<A NAME="RY01910ST-1I">1i</A>
Melchiorre P.
Marigo M.
Carlone A.
Bartoli G.
Angew. Chem. Int. Ed.
2008,
47:
6138
<A NAME="RY01910ST-1J">1j</A>
Jørgensen KA.
Bertelsen S.
Chem.
Soc. Rev.
2009,
38:
2178
<A NAME="RY01910ST-1K">1k</A>
Bella M.
Gasperi T.
Synthesis
2009,
1583
<A NAME="RY01910ST-1L">1l</A>
Grondal C.
Jeanty M.
Enders D.
Nat.
Chem.
2010,
2:
167
For a general review on asymmetric
Michael additions to nitroalkenes, see:
<A NAME="RY01910ST-2A">2a</A>
Berner OM.
Tedeschi L.
Enders D.
Eur. J. Org. Chem.
2002,
1877
For recent reviews on organocatalyzed Michael-additions,
see:
<A NAME="RY01910ST-2B">2b</A>
Tsogoeva SB.
Eur. J. Org. Chem.
2007,
1701:
<A NAME="RY01910ST-2C">2c</A>
Sulzer-Mossé S.
Alexakis A.
Chem. Commun.
2007,
43:
3123
<A NAME="RY01910ST-2D">2d</A>
Vicario JL.
Badía D.
Carrillo L.
Synthesis
2007,
2065
<A NAME="RY01910ST-2E">2e</A>
Almaºi D.
Alonso DA.
Nájera C.
Tetrahedron: Asymmetry
2007,
18:
299
<A NAME="RY01910ST-2F">2f</A>
Enders D.
Wang C.
Liebich JX.
Chem.
Eur. J.
2009,
15:
11058
For first reports on amine-catalyzed
asymmetric Michael additions to nitroalkenes via enamine intermediates,
see:
<A NAME="RY01910ST-3A">3a</A>
List B.
Pojarliev P.
Martin HJ.
Org.
Lett.
2001,
3:
2423
<A NAME="RY01910ST-3B">3b</A>
Sakthivel K.
Notz W.
Bui T.
Barbas CF.
J. Am. Chem. Soc.
2001,
123:
5260
<A NAME="RY01910ST-3C">3c</A>
Betancort JM.
Barbas CF.
Org.
Lett.
2001,
3:
3737
<A NAME="RY01910ST-3D">3d</A>
Betancort
JM.
Sakthivel K.
Thayumanavan R.
Barbas CF.
Tetrahedron
Lett.
2001,
42:
4441
<A NAME="RY01910ST-3E">3e</A>
Enders D.
Seki A.
Synlett
2002,
26
For selected examples of organocatalytic
domino or tandem reactions involving Michael additions to nitroalkenes
via enamine intermediates, see:
<A NAME="RY01910ST-4A">4a</A>
Enders D.
Hüttl MRM.
Grondal C.
Raabe G.
Nature (London)
2006,
441:
861
<A NAME="RY01910ST-4B">4b</A>
Enders D.
Hüttl MRM.
Runsink J.
Raabe G.
Wendt B.
Angew.
Chem. Int. Ed.
2007,
46:
467
<A NAME="RY01910ST-4C">4c</A>
Hayashi Y.
Okano T.
Aratake S.
Hazelard D.
Angew. Chem. Int. Ed.
2007,
46:
4922
<A NAME="RY01910ST-4D">4d</A>
Enders D.
Hüttl MRM.
Raabe G.
Bats JW.
Adv.
Synth. Catal.
2008,
350:
267
<A NAME="RY01910ST-4E">4e</A>
Enders D.
Wang C.
Bats JW.
Angew.
Chem. Int. Ed.
2008,
47:
7539
<A NAME="RY01910ST-4F">4f</A>
Cao C.-L.
Zhou Y.-Y.
Zhou J.
Sun X.-L.
Tang Y.
Li Y.-X.
Li G.-Y.
Sun J.
Chem. Eur.
J.
2009,
15:
11384
<A NAME="RY01910ST-4G">4g</A>
Zhu D.
Lu M.
Dai L.
Zhong G.
Angew. Chem. Int. Ed.
2009,
48:
6089
<A NAME="RY01910ST-4H">4h</A>
Wu L.-Y.
Bencivenni G.
Mancinelli M.
Mazzanti A.
Bartoli G.
Melchiorre P.
Angew. Chem. Int. Ed.
2009,
48:
7196
<A NAME="RY01910ST-4I">4i</A>
Belot S.
Vogt KA.
Besnard C.
Krause N.
Alexakis A.
Angew.
Chem. Int. Ed.
2009,
48:
8923
<A NAME="RY01910ST-4J">4j</A>
Enders D.
Krüll R.
Bettray W.
Synthesis
2010,
567
<A NAME="RY01910ST-4K">4k</A>
Enders D.
Wang C.
Mukanova M.
Greb A.
Chem. Commun.
2010,
46:
2447
<A NAME="RY01910ST-5A">5a</A>
Enders D.
Wang C.
Greb A.
Adv. Synth. Catal.
2010,
352:
987
<A NAME="RY01910ST-5B">5b</A>
Enders D.
Wang C.
Yang X.
Raabe G.
Adv. Synth. Catal.
2010,
352:
2869
<A NAME="RY01910ST-6A">6a</A>
Mothes K.
Schütte HR.
Luckner M.
Biochemistry of Alkaloids
Verlag
Chemie;
Weinheim:
1985.
<A NAME="RY01910ST-6B">6b</A>
Southon JW.
Buckingham J.
Dictionary of Alkaloids
Chapmann and
Hall;
London:
1988.
<A NAME="RY01910ST-6C">6c</A>
Sundberg RJ.
Indoles
Academic
Press;
San Diego:
1996.
For selected examples of organocatalytic
domino or one-pot reactions involving indoles as a component, see:
<A NAME="RY01910ST-7A">7a</A>
Austin J.-F.
Kim S.-G.
Sinz CJ.
Xiao W.-J.
MacMillan
DWC.
Proc. Natl. Acad. Sci. U.S.A.
2004,
101:
5482
<A NAME="RY01910ST-7B">7b</A>
Enders D.
Narine AA.
Toulgoat F.
Bisshops T.
Angew. Chem. Int. Ed.
2008,
47:
5661
<A NAME="RY01910ST-7C">7c</A>
Franzén J.
Fisher A.
Angew. Chem.
Int. Ed.
2009,
48:
787
<A NAME="RY01910ST-7D">7d</A>
Enders D.
Wang C.
Raabe G.
Synthesis
2009,
4119
<A NAME="RY01910ST-7E">7e</A>
Hong L.
Sun W.
Liu C.
Wang L.
Wang R.
Chem. Eur.
J.
2010,
15:
440
For selected examples of organocatalytic
domino reactions involving hemiacetalization, acetalization, or
hemi-aminalization steps, see ref. 5b and:
<A NAME="RY01910ST-8A">8a</A>
Andrey O.
Vidonne A.
Alexakis A.
Tetrahedron
Lett.
2003,
44:
7901
<A NAME="RY01910ST-8B">8b</A>
Ibrahem I.
Rios R.
Veseley J.
Zhao G.-L.
Córdova A.
Chem.
Commun.
2007,
849
<A NAME="RY01910ST-8C">8c</A>
Rueping M.
Sugiono E.
Merino E.
Angew.
Chem. Int. Ed.
2008,
47:
3046
<A NAME="RY01910ST-8D">8d</A>
Franke T.
Richter B.
Jørgensen KA.
Chem. Eur. J.
2008,
14:
6317
<A NAME="RY01910ST-8E">8e</A>
Hayashi Y.
Gotoh H.
Masui R.
Ishikawa H.
Angew. Chem. Int. Ed.
2008,
47:
4012
<A NAME="RY01910ST-8F">8f</A>
Han B.
Li J.-L.
Ma C.
Zhang S.-J.
Chen Y.-C.
Angew.
Chem. Int. Ed.
2008,
47:
9971
<A NAME="RY01910ST-8G">8g</A>
Gotoh H.
Okamura D.
Ishikawa H.
Hayashi Y.
Org. Lett.
2009,
11:
4056
<A NAME="RY01910ST-8H">8h</A>
Bo H.
He Z.-Q.
Li J.-L.
Li R.
Jiang K.
Liu T.-J.
Chen Y.-C.
Angew. Chem. Int. Ed.
2009,
48:
5474
<A NAME="RY01910ST-8I">8i</A>
Reyes E.
Talavera G.
Vicario JL.
Badía D.
Carrillo L.
Angew.
Chem. Int. Ed.
2009,
48:
5701
<A NAME="RY01910ST-8J">8j</A>
Wang Y.
Yu D.-F.
Liu Y.-Z.
Wei H.
Luo Y.-C.
Dixon DJ.
Xu
P.-F.
Chem.
Eur. J.
2010,
16:
3922
<A NAME="RY01910ST-8K">8k</A>
Urushima T.
Sakamoto D.
Ishikawa H.
Hayashi Y.
Org. Lett.
2010,
12:
4558
For selected examples of the synthesis
of 1H-pyrrolo-[1,2a]indol-3(2H)-ones,
see:
<A NAME="RY01910ST-9A">9a</A>
Crenshaw MD.
Zimmer H.
J. Heterocycl.
Chem.
1984,
21:
623
<A NAME="RY01910ST-9B">9b</A>
Vice SF.
Friesen RW.
Dmitrienko GI.
Tetrahedron Lett.
1985,
26:
165
<A NAME="RY01910ST-9C">9c</A>
Flitsch W.
Langer W.
Liebigs Ann. Chem.
1988,
391
<A NAME="RY01910ST-9D">9d</A>
Liu J.
Shen M.
Zhang Y.
Li G.
Khodabocus A.
Rodriguez S.
Bo Q.
Farina V.
Senanayake CH.
Lu BZ.
Org. Lett.
2006,
8:
3573
<A NAME="RY01910ST-9E">9e</A>
Liu J.
Zhang Y.
Li G.
Roschangar F.
Farina V.
Senanayake CH.
Lu BZ.
Adv.
Synth. Catal.
2010,
352:
2667
For reviews on diphenylprolinol
TMS-ether catalysis, see:
<A NAME="RY01910ST-10A">10a</A>
Palomo C.
Mielgo A.
Angew. Chem. Int. Ed.
2006,
45:
7876
<A NAME="RY01910ST-10B">10b</A>
Mielgo A.
Palomo C.
Chem. Asian J.
2008,
922
<A NAME="RY01910ST-11A">11a</A>
Hayashi Y.
Gotoh H.
Hayashi T.
Shoji M.
Angew. Chem.
Int. Ed.
2005,
44:
4212
<A NAME="RY01910ST-11B">11b</A>
Zhu S.
Yu S.
Ma D.
Angew.
Chem. Int. Ed.
2008,
47:
545
<A NAME="RY01910ST-12">12</A>
CCDC-798847 (6f)
contains the supplementary crystallographic data for this paper.
These data can
be obtained free of charge from The Cambridge Crystallographic
Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
<A NAME="RY01910ST-13">13</A>
Flack HD.
Acta
Crystallogr., Sect. A: Found. Crystallogr.
1983,
39:
876
<A NAME="RY01910ST-14">14</A>
General Procedure
To
a solution of aldehydes 1 (3.0 mmol, 3.0
equiv), (E)-2-(2-nitrovinyl)-1H-indoles 2 (1.0
mmol, 1.0 equiv), and AcOH (0.20 mmol, 20 mol%) in CH2Cl2 (4.0
mL) was added (R)-diphenylprolinol TMS-ether [(R)-3] (0.15
mmol, 15 mol%). After stirring for 1 d, the reaction mixture
was treated with pyridinium chloromate (2.0 mmol, 2.0 equiv) and
stirred at r.t. for 1 d. The crude product was purified by flash chromatography
on silica gel (pentane-Et2O mixture) affording
the corresponding 1H-pyrrolo[1,2a]indol-3
(2H)-ones 6 as
a solid or sirup.
(1
S
,2
S
)-2-Butyl-7-chloro-1-(nitromethyl)-1
H
-pyrrolo[1,2-
a
]indol-3
(2
H
)-one
(6f)
Isolated as a yellow solid (186 mg, 58%).
The ee (>99%) was determined by HPLC on a chiral
stationary phase [Chiralcel OD, n-heptane-EtOH
(9:1), 1.0 mL/min), t
R = 11.52
min (major), 13.16 min (minor, based on the racemic mixture)];
mp 108 ˚C; [α]D
²0 = 77.2
(c 0.32, CHCl3). IR (KBr):
3293, 3196, 2955, 2924, 2867, 2160, 2064, 1725, 1662, 1598, 1582,
1554, 1498, 1446, 1391, 1360, 1317, 1264, 1201, 1167, 1146, 1055,
968, 946, 914, 893, 868, 810, 777, 754, 712, 693, 677, 655 cm-¹. ¹H
NMR (300 MHz, CDCl3): δ = 0.96
(t, J = 7.2
Hz, 3 H), 1.26-1.66 (m, 5 H), 1.88-2.00 (m, 1
H), 3.36-3.44 (m, 1 H), 4.32-4.40 (m, 1 H), 4.48-4.56
(m, 1 H), 4.71-4.77 (m, 1 H), 6.29 (s, 1 H), 7.25-7.29
(m, 1 H), 7.48 (d, J = 2.8
Hz, 1 H), 7.93 (d, J = 8.7
Hz, 1 H) ppm. ¹³C NMR (75 MHz, CDCl3): δ = 13.8, 22.6,
26.1, 29.7, 34.4, 48.5, 74.8, 101.8, 114.6, 120.9, 124.6, 128.8,
130.0, 135.5, 142.0, 171.1 ppm. MS (EI, 70 eV):
m/z (%) = 320
(33) [M+], 273 (29), 219 (36),
217 (100). ESI-HRMS: m/z calcd
for C16H17O3N2
³5Cl:
320.0922; found: 320.0923.