Synlett 2011(7): 895-898  
DOI: 10.1055/s-0030-1259706
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Total Synthesis of Amphidinolide T3 Using Ring-Closing Metathesis and Asymmetric Dihydroxylation Strategy

Dongdong Wua, Huoming Lia,b, Jian Jinb, Jinlong Wua, Wei-Min Dai*a,b
a Laboratory of Asymmetric Catalysis and Synthesis, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. of China
Fax: +86(571)87953128; e-Mail: [email protected];
b Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR,P. R. of China
Fax: +85223581594; e-Mail: [email protected];
Further Information

Publication History

Received 9 December 2010
Publication Date:
08 March 2011 (online)

Abstract

Total synthesis of amphidinolide T3, a 19-membered ring marine macrolide, has been accomplished using a ring-closing metathesis (RCM) and asymmetric dihydroxylation (AD) strategy. A cycloalkene having the C12=C13 double bond was assembled via RCM in 80% yield and in E/Z ratio of 76:24. The (12E)-isomer ­underwent AD using 1 mol% K2OsO2(OH)4 and 4 mol% (DHQD)2AQN as the chiral catalyst at 0 ˚C for 15 hours, furnishing the desired (12R,13R)-diol and its (12S,13S)-diastereomer in 59% and 25% yields, respectively. Selective monosilylation of (12R,13R)-diol followed by DMP oxidation and desilylation afforded amphidinolide T3 in 3.4% overall yield via a 15-step sequence.

    References and Notes

  • For reviews, see:
  • 1a Kobayashi J. Tsuda M. Nat. Prod. Rep.  2004,  21:  77 
  • 1b Kobayashi J. Kubota T. J. Nat. Prod.  2007,  70:  451 
  • 1c Kobayashi J. J. Antibiot.  2008,  61:  271 
  • 2a Tsuda M. Endo T. Kobayashi J. J. Org. Chem.  2000,  65:  1349 
  • 2b Kobayashi J. Kubota T. Endo T. Tsuda M. J. Org. Chem.  2001,  66:  134 
  • 2c Kubota T. Endo T. Tsuda M. Shiro M. Kobayashi J. Tetrahedron  2001,  57:  6175 
  • For total synthesis of amphidinolide T1, see:
  • 3a Ghosh AK. Liu C. J. Am. Chem. Soc.  2003,  125:  2374 
  • 3b Aïssa C. Riveiros R. Ragot J. Fürstner A. J. Am. Chem. Soc.  2003,  125:  15512 
  • 3c Colby EA. O’Brien KC. Jamison TF. J. Am., Chem. Soc.  2004,  126:  998 
  • 3d Colby EA. O’Brien KC. Jamison TF. J. Am. Chem. Soc.  2005,  127:  4297 
  • 3e Yadav JS. Reddy CS. Org. Lett.  2009,  11:  1705 
  • 4 For total synthesis of amphidinolide T2, see: Li H. Wu J. Luo J. Dai W.-M. Chem. Eur. J.  2010,  16:  11530 
  • For total synthesis of amphidinolide T3, see:
  • 5a Deng L.-S. Huang X.-P. Zhao G. J. Org. Chem.  2006,  71:  4625 
  • 5b

    Ref. 3b.

  • For total synthesis of amphidinolide T4, see:
  • 6a Fürstner A. Aïssa C. Riveiros R. Ragot J. Angew. Chem. Int. Ed.  2002,  41:  4763 
  • 6b

    Refs. 3b and 3d.

  • For synthesis of fragments, see:
  • 7a O’Brien KC. Colby EA. Jamison TF. Tetrahedron  2005,  61:  6243 
  • 7b Abbineni C. Sasmal PK. Mukkanti K. Iqbal J. Tetrahedron Lett.  2007,  48:  4259 
  • 7c Luo J. Li H. Wu J. Xing X. Dai W.-M. Tetrahedron  2009,  65:  6828 
  • 7d Sasmal PK. Abbineni C. Iqbal J. Mukkanti K. Tetrahedron  2010,  66:  5000 
  • For selective reviews on RCM, see:
  • 8a Grubbs RH. Chang S. Tetrahedron  1998,  54:  4413 
  • 8b Fürstner A. Angew. Chem. Int. Ed.  2000,  39:  3012 
  • 8c Trnka TM. Grubbs RH. Acc. Chem. Res.  2001,  34:  18 
  • 8d Schrock RR. Hoveyda AH. Angew. Chem. Int. Ed.  2003,  42:  4592 
  • 8e Deiters A. Martin SF. Chem. Rev.  2004,  104:  2199 
  • 8f Grubbs RH. Tetrahedron  2004,  60:  7117 
  • 8g Nicolaou KC. Bulger PG. Sarlah D. Angew. Chem. Int. Ed.  2005,  44:  4490 
  • 8h Gradillas A. Pérez-Castells J. Angew. Chem. Int. Ed.  2006,  45:  6086 
  • 8i Schrodi Y. Pederson RL. Aldrichimica Acta  2007,  40:  45 
  • 8j Hoveyda AH. Zhugralin AR. Nature (London)  2007,  450:  243 
  • 8k Also see: Handbook of Metathesis   Vol. 1:  Grubbs RH. Wiley-VCH; Weinheim: 2003. 
  • 8l Handbook of Metathesis   Vol. 2:  Grubbs RH. Wiley-VCH; Weinheim: 2003. 
  • 8m Handbook of Metathesis   Vol. 3:  Grubbs RH. Wiley-VCH; Weinheim: 2003. 
  • For recent reviews on AD, see:
  • 9a Zaitsev AB. Adolfsson H. Synthesis  2006,  1725 
  • 9b Français A. Bedel O. Haudrechy A. Tetrahedron  2008,  64:  2495 
  • For total synthesis of amphidinolides X and Y, see:
  • 10a Chen Y. Jin J. Wu J. Dai W.-M. Synlett  2006,  1177 
  • 10b Jin J. Chen Y. Wu J. Dai W.-M. Org. Lett.  2007,  9:  2585 
  • 10c Dai W.-M. Chen Y. Jin J. Wu J. Lou J. He Q. Synlett  2008,  1737 
  • 11a Sun L. Feng G. Guan Y. Liu Y. Wu J. Dai W.-M. Synlett  2009,  2361 
  • 11b Liu Y. Wang J. Li H. Wu J. Feng G. Dai W.-M. Synlett  2010,  2184 
  • For examples of RCM-AD in large ring systems, see:
  • 12a Nattrass GL. Díez E. McLachlan MM. Dixon DJ. Ley SV. Angew. Chem. Int. Ed.  2005,  44:  580 
  • 12b Jasper C. Adibekian A. Busch T. Quitschalle M. Wittenberg R. Kirschning A. Chem. Eur. J.  2006,  12:  8719 
  • 13a Genêt JP. Ratovelomanana-Vidal V. Caño de Anderade MC. Pfister X. Guerreiro P. Lenoir JY. Tetrahedron Lett.  1995,  36:  4801 
  • 13b Kitamura M. Tokunaga M. Ohkuma T. Noyori R. Org. Synth.  1993,  71:  1 
  • 14 Matsubara S. Sugihara M. Utimoto K. Synlett  1998,  313 
  • 16 Norrby P. Rasmussen T. Haller J. Strassner T. Houk KN. J. Am. Chem. Soc.  1999,  121:  10186 
15

Characterization Data for Alcohol 6: colorless oil; [α]D ²0 -0.27 (c = 2.25, CHCl3); R f 0.27 (5% EtOAc in PE). IR (film): 3358 (br), 3076, 2959, 2928, 1642, 1456, 1020 cm. ¹H NMR (400 MHz, CDCl3): δ = 5.69 (ddd, J = 17.2, 10.4, 7.2 Hz, 1 H), 4.95 (d, J = 17.2 Hz, 1 H), 4.92 (d, J = 10.8 Hz, 1 H), 4.88 (s, 1 H), 4.87 (s, 1 H), 3.71 (br s, 1 H), 2.30-2.40 (m, 1 H), 2.21 (dd, J = 14.0, 3.6 Hz, 1 H), 2.00-2.06 (m, 3 H), 1.34-1.52 (m, 4 H), 1.00 (d, J = 6.4 Hz, 3 H), 0.93 (t, J = 7.0 Hz, 3 H). ¹³C NMR (100 MHz, CDCl3): δ = 144.8, 143.9, 113.9, 112.8, 68.5, 44.3, 43.3, 39.2, 35.7, 20.1, 18.9, 14.1.

17

Characterization Data for Amphidinolide T3 (3): colorless oil. ¹H NMR data are identical to those of
natural amphidinolide T3 (see Figure S1 in Supporting Information). HRMS (+ESI): m/z [M + Na+] calcd for C25H42O5Na: 445.2930; found: 445.2916.