RSS-Feed abonnieren
DOI: 10.1055/s-0030-1259730
A Green Chemistry Method for the Regeneration of Carbonyl Compounds from Oximes by Using Cupric Chloride Dihydrate as a Recoverable Promoter for Hydrolysis
Publikationsverlauf
Publikationsdatum:
10. März 2011 (online)

Abstract
A mild, efficient, general, and green method for the regeneration of carbonyl compounds from their corresponding oximes is described. Cupric salts promoted hydrolysis of oximes was studied, and the best reaction conditions for the hydrolysis have been found. Carbonyl compounds were obtained in 85-98% yields after the treatment of oximes with 2 molar equivalent of CuCl2˙2H2O at reflux (around 75 ˚C) in a mixed solvent of acetonitrile and water (4:1). In addition, cupric salt was readily recovered in an almost quantitative yield via the complete precipitation of Cu(OH)2˙2H2O.
Key words
carbonyl compounds - oxime - hydrolysis - cupric chloride - green chemistry
- 1a
Corsaro A.Chiacchio MA.Pistara V. Curr. Org. Chem. 2009, 13: 482Reference Ris Wihthout Link - 1b
Corsaro A.Chiacchio U.Pistara V. Synthesis 2001, 1903Reference Ris Wihthout Link - 2
Greene TW.Wuts PGM. Protective Groups in Organic Synthesis 3rd ed.: John Wiley; New York: 1999. - 3
Shriner RL.Fuson RC.Curtin DY.Morrill TC. The Systematic Identification of Organic Compounds 6th ed.: John Wiley; New York: 1980. - 4a
Wang K.Qian X.Cui J. Tetrahedron 2009, 65: 10377Reference Ris Wihthout Link - 4b
Domingo LR.Picher MT.Arroyo P.Sez JA. J. Org. Chem. 2006, 71: 9319Reference Ris Wihthout Link - 4c
Czekelius C.Carreira EM. Angew. Chem. Int. Ed. 2005, 44: 612Reference Ris Wihthout Link - 4d
Kabalka GW.Pace RD.Wadgaonkar PP. Synth. Commun. 1990, 20: 2453Reference Ris Wihthout Link - 4e
Baran J.Mayr H. J. Org. Chem. 1989, 54: 5012Reference Ris Wihthout Link - 4f
Barton DH.Beaton JM.
J. Am. Chem. Soc. 1961, 83: 4083Reference Ris Wihthout Link - 4g
Barton DHR.Beaton JM.Geller LE.Pechet MM. J. Am. Chem. Soc. 1961, 83: 4076Reference Ris Wihthout Link - 5a
De S K. Tetrahedron Lett. 2003, 44: 9055Reference Ris Wihthout Link - 5b
Shirini F.Zolfigol MA.Safari A.Mohammadpoor-Baltork I.Mirjalili BF. Tetrahedron Lett. 2003, 44: 7463Reference Ris Wihthout Link - 5c
Shirini F.Zolfigol MA.Mallakpour B.Mallakpour SE.Hajipour AR.Baltork IM. Tetrahedron Lett. 2002, 43: 1555Reference Ris Wihthout Link - 5d
Lee SY.Lee BS.Lee C.-W.Oh DY.
J. Org. Chem. 2000, 65: 256Reference Ris Wihthout Link - 5e
Curini M.Rosati O.Pisani E.Costantino U. Synlett 1996, 333Reference Ris Wihthout Link - 5f
Ranu BC.Sarkar DC. J. Org. Chem. 1988, 53: 878Reference Ris Wihthout Link - 5g
Donaldson RE.Saddler JC.Byrn S.McKenzie AT.Fuchs PL. J. Org. Chem. 1983, 48: 2167Reference Ris Wihthout Link - 5h
Cava MP.Little RL.Napier DR. J. Am. Chem. Soc. 1958, 80: 2257Reference Ris Wihthout Link - 6a
Majireck MM.Witek JA.Weinreb SM. Tetrahedron Lett. 2010, 51: 3555Reference Ris Wihthout Link - 6b
Martin M.Martinez G.Urpi F.Vilarrasa J. Tetrahedron Lett. 2004, 45: 5559Reference Ris Wihthout Link - 6c
Lukin KA.Narayanan BA. Tetrahedron 2002, 58: 215Reference Ris Wihthout Link - 6d
Watanabe Y.Morimoto S.Adachi T.Kashimura M.Asaka T. J. Antibiot. 1993, 46: 647Reference Ris Wihthout Link - 6e
Akazome M.Tsuji Y.Watanabe Y. Chem. Lett. 1990, 635Reference Ris Wihthout Link - 6f
Curran DP.Brill JF.Rakiewicz DM. J. Org. Chem. 1984, 49: 1654Reference Ris Wihthout Link - 6g
Barton DHR.Motherwell WB.Simon ES.Zard SZ. J. Chem. Soc., Chem. Commun. 1984, 337Reference Ris Wihthout Link - 6h
Olah GA.Arvanaghi M.Prakash GKS. Synthesis 1980, 220Reference Ris Wihthout Link - 6i
Pojer PM. Aust. J. Chem. 1979, 32: 201Reference Ris Wihthout Link - 6j
Timms GH.Wildsmith E. Tetrahedron Lett. 1971, 12: 195Reference Ris Wihthout Link - 6k
Corey EJ.Richman JE. J. Am. Chem. Soc. 1970, 92: 5276Reference Ris Wihthout Link - 6l
Pines SH.Chemerda JM.Kozlowski MA. J. Org. Chem. 1966, 31: 3446Reference Ris Wihthout Link - Numerous methods for the oxidative deoximation have been reported, recent examples are as follows:
- 7a
Zhou X.-T.Yuan Q.-L.Ji H.-B. Tetrahedron Lett. 2010, 51: 613Reference Ris Wihthout Link - 7b
Shaabani A.Farhangi E. Appl. Catal., A 2009, 371: 148Reference Ris Wihthout Link - 7c
Ganguly NC.Barik SK. Synthesis 2008, 425Reference Ris Wihthout Link - 7d
Gupta PK.Manral L.Ganesan K. Synthesis 2007, 1930Reference Ris Wihthout Link - 7e
Gogoi P.Hazarika P.Konwar D. J. Org. Chem. 2005, 70: 1934Reference Ris Wihthout Link - 7f
Shaabani A.Naderi S.Rahmati A.Badri Z.Darvishi M.Lee DG. Synthesis 2005, 3023Reference Ris Wihthout Link - 7g
Khazaei A.Manesh AA. Synthesis 2005, 1929Reference Ris Wihthout Link - 7h
Jain N.Kumar A.Chauhan SMS. Tetrahedron Lett. 2005, 46: 2599Reference Ris Wihthout Link - 7i
Li Z.Ding R.-B.Xing Y.-L.Shi S.-Y. Synth. Commun. 2005, 35: 2515Reference Ris Wihthout Link - 7j
Khazaei A.Manesh AA. Synthesis 2004, 1739Reference Ris Wihthout Link - 7k
Yang Y.Zhang D.Wu L.-Z.Chen B.Zhang L.-P.Tung C.-H. J. Org. Chem. 2004, 69: 4788Reference Ris Wihthout Link - 7l
Arnold JN.Hayes PD.Kohaus RL.Mohan RS. Tetrahedron Lett. 2003, 44: 9173Reference Ris Wihthout Link - 7m
Krishnaveni NS.Surendra K.Nageswar YVD.Rao KR. Synthesis 2003, 1968Reference Ris Wihthout Link - 7n
Narsaiah AV.Nagaiah K. Synthesis 2003, 1881Reference Ris Wihthout Link - 7o
Bose DS.Reddy AVN.Das APR. Synthesis 2003, 1883Reference Ris Wihthout Link - 7p
Chandrasekhar S.Gopalaiah K. Tetrahedron Lett. 2002, 43: 4023Reference Ris Wihthout Link - 7q
Khazaei A.Vaghei RG. Tetrahedron Lett. 2002, 43: 3073Reference Ris Wihthout Link - 7r
Hosseinzadeh R.Tajbakhsh M.Niaki MY. Tetrahedron Lett. 2002, 43: 9413Reference Ris Wihthout Link - 7s
Blay G.Benach E.Fernandez I.Galletero S.Pedro J.Ruiz R. Synthesis 2000, 403Reference Ris Wihthout Link - 8a
Chavan SP.Soni P. Tetrahedron Lett. 2004, 45: 3161Reference Ris Wihthout Link - 8b
Maynez SR.Pelavin L.Erker G. J. Org. Chem. 1975, 40: 3302Reference Ris Wihthout Link - 8c
DePuy CH.Ponder BW. J. Am. Chem. Soc. 1959, 81: 4629Reference Ris Wihthout Link - 8d
Hershberg EB. J. Org. Chem. 1948, 13: 542Reference Ris Wihthout Link - Carbonyl compounds can also be regenerated from oximes via photochemical and electrochemical methods, but only a few examples have been reported:
- 9a
de Lijser HJP.Fardoun FH.Sawyer JR.Quant M. Org. Lett. 2002, 4: 2325Reference Ris Wihthout Link - 9b
Haley MF.Yates K. J. Org. Chem. 1987, 52: 1817Reference Ris Wihthout Link - 9c
Mandic Z.Lopotar N. Electrochem. Commun. 2005, 7: 45Reference Ris Wihthout Link - 10
Gawly RE. Org. React. 1988, 35: 1 ; and references cited therein - 11
Jiang N.Ragauskas AJ. Tetrahedron Lett. 2010, 51: 4479 - 12
Corey EJ.Knapp S. Tetrahedron Lett. 1976, 41: 3667 - 14
Stutz P.Stadler PA. Org. Synth., Coll. Vol. VI 1988, 109 - 15a
Horvath IT.Anastas PT. Chem. Rev. 2007, 107: 2167Reference Ris Wihthout Link - 15b
Horvath IT. Acc. Chem. Res. 2002, 35: 685Reference Ris Wihthout Link
References and Notes
Typical Procedure
for the CuCl
2
˙2H
2
O-Promoted Regeneration of Carbonyl Compounds
from Various Oximes
Oxime 1a (1.01
g, 5.12 mmol) was dissolved in MeCN (20 mL), CuCl2˙2H2O
(1.73 g, 10.15 mmol) and H2O (5 mL) were added. When
the suspension was heated to reflux, the mixture became a bluish
clear solution. The resulting reaction solution was then stirred
at reflux (75 ˚C) for around 2 h and monitored
by TLC (EtOAc-hexane, 1:6). After the reaction
was complete, the solvents were removed by vacuum distillation.
The residue was partitioned between EtOAc (50 mL) and H2O
(30 mL), the organic and aqueous phases were separated. Organic
phase was washed with brine (5 mL) and dried over anhyd MgSO4.
Concentration of the organic solution gave crude product, which
was purified by flash chromatography to afford benzophenone (2a, 0.914 g, 5.02 mmol) in 98% yield.
To the above-mentioned aqueous phase was added an aq solution of
NaOH (11.0 mL, 2 M, 22.00 mmol). After vigorous stirring for 1 h,
the bluish solid was collected on a Buchner funnel by suction. After being
dried in a warm air at around 50 ˚C for 12 h until
the weight of the solid kept constant, Cu(OH)2˙2H2O
(1.34 g, 10.03 mmol) was recovered in 99% yield.
Spectral
analysis showed that compounds 2a-e,i-l,n-s,v obtained from
the above hydrolysis are identical with the commercially available
authentic samples. Characterization data of compounds 2f-h,m,t,u are as follows:
Compound 2f: ¹H NMR (400 MHz,
CDCl3): δ = 3.89
(s, 3 H), 7.35 (d, J = 7.9
Hz, 1 H), 7.48-7.57 (m, 4 H), 7.62-7.69 (m, 1
H), 8.18-8.24 (m, 2 H), 9.98 (s, 1 H). MS (EI): m/z (%) = 256
(4) [M+], 217 (18), 182 (2),
155 (2), 105 (100), 77 (17). IR (KBr): ν = 3005,
2885, 1735, 1680, 1600, 1505, 1450, 1400, 1255, 1190, 1140, 1120,
1060, 1025, 850, 805, 730, 700 cm-¹.
Compound 2g: ¹H NMR (400 MHz,
CDCl3): δ = 1.30
(t, J = 7.1
Hz, 3 H), 4.30 (q, J = 7.1
Hz, 2 H), 4.71 (s, 2 H), 7.02 (d, J = 6.9
Hz, 2 H), 7.85 (d, J = 6.9
Hz, 2 H), 9.90 (s, 1 H). IR (neat): ν = 2980,
2835, 2770, 1755, 1690, 1600, 1510, 1440, 1380, 1310, 1280, 1205,
1160, 1080, 1025, 835, 715, 610 cm-¹.
HRMS (EI): m/z calcd for C11H12O4 [M+]: 208.0736;
found: 208.0730.
Compound 2h: ¹H
NMR (400 MHz, CDCl3): δ = 1.30
(t, J = 7.1
Hz, 3 H), 3.96 (s, 1 H), 4.28 (q, J = 7.1
Hz, 2 H), 4.79 (s, 2 H), 6.84 (d, J = 8.1
Hz, 1 H), 7.41-7.46 (m, 2 H), 9.87 (s, 1 H). IR (KBr): ν = 2980,
2940, 2910, 1750, 1680, 1590, 1510, 1470, 1430, 1395, 1270, 1200,
1140, 1070, 1030, 870, 810, 780, 735, 640 cm-¹.
HRMS (EI): m/z calcd for C12H14O5 [M+]:
238.0841; found: 238.0839.
Compound 2m: ¹H
NMR (400 MHz, CDCl3): δ = 7.52
(dd, J
1 = 1.6
Hz, J
2 = 8.6
Hz, 1 H), 7.67 (d, J = 1.6
Hz, 1 H), 8.29 (d, J = 8.6
Hz, 1 H), 10.07 (s, 1 H), 10.58 (s, 1 H). IR (KBr): ν = 3255,
3085, 2870, 1700, 1620, 1585, 1530, 1480, 1450, 1315, 1255, 1165,
1140, 1080, 985, 850, 760, 705, 540 cm-¹. MS
(EI): m/z (%) = 167
(100) [M+], 166 (44), 151
(1), 136 (3), 119 (7), 109 (4), 92 (3), 81 (3), 63 (6).
Compound 2t: ¹H NMR (400 MHz,
CDCl3): δ = 2.28
(s, 3 H), 3.50-3.69 (m, 2 H), 4.88 (dd, J
1 = 6.1
Hz, J
2 = 8.1
Hz, 1 H), 7.03 (d, J = 7.9
Hz, 2 H), 7.13-7.26 (m, 5 H), 7.28-7.35 (m, 2
H), 7.37-7.44 (m, 2 H) 7.48-7.55 (m, 1 H), 7.82-7.89 (m,
2 H). MS (EI): m/z (%) = 332(4) [M+],
209 (5), 179 (2), 123 (13), 105 (100), 91 (6), 77 (59). IR (KBr): ν = 3035, 2920,
1685, 1595, 1490, 1450, 1420, 1335, 1220, 980, 810, 745, 700, 685,
550 cm-¹.
Compound 2u: ¹H NMR (400 MHz,
CDCl3): δ = 2.05
(s, 3 H), 2.29 (s, 3 H), 2.92-3.08 (m, 2 H), 4.63 (dd, J
1 = 6.8
Hz, J
2 = 7.8
Hz, 1 H), 7.03 (d, J = 8.0
Hz, 2 H), 7.18 (d, J = 8.0 Hz,
2 H), 7.19-7.26 (m, 5 H). MS (EI): m/z (%) = 270
(32) [M+], 213 (2), 147 (43),
124 (100), 103 (5), 91 (12), 77 (7), 43 (43). IR (neat): ν = 3030,
2940, 1720, 1490, 1455, 1410, 1360, 1150, 1020, 810, 700, 535, 500
cm-¹.
When the pH value was kept higher than 9.5, the precipitation of Cu(OH)2˙2H2O was complete, which was determined by adding 2 drops of an aq solution of Na2S into the filtrate. No black CuS appeared.
17
Conversion of
Cu(OH)
2
˙2H
2
O into CuCl
2
˙2H
2
O
The
above Cu(OH)2˙2H2O was first heated
at 150 ˚C for around 6 h, and the resulting brown
anhyd CuO was then treated with 2.2 molar equivalent of aq HCl at
reflux for 2 h. Removal of H2O under vacuum at 45 ˚C
gave blue crystalline CuCl2˙2H2O
in a nearly quantitative yield.