Synlett 2011(7): 931-934  
DOI: 10.1055/s-0030-1259904
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Highly Regioselective Synthesis of 2,3,5-Trisubstituted Furans via Phosphine-Catalyzed Ring-Opening Cycloisomerization Reactions of Cyclopropenyl Dicarboxylates

Jie Chena, Shengjun Nia, Shengming Ma*a,b
a State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, P. R. of China
b Shanghai Key Laboratory of Green Chemistry and Chemical Process, Department of Chemistry, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. of China
Fax: +86(21)62609305; e-Mail: masm@sioc.ac.cn;
Further Information

Publication History

Received 3 December 2010
Publication Date:
10 March 2011 (online)

Abstract

Different 2,3,5-trisubstituted furans have been regioselectively synthesized through a ring-opening cycloisomerization of functionalized cyclopropenyl carboxylates with moderate to excellent yields by using tri(2-furanyl)phosphine as the catalyst.

    References and Notes

  • 1 Quin LD. A Guide to Organophosphorus Chemistry   Wiley; New York: 2000. 
  • 2a Tang W. Zhang X. Chem. Rev.  2003,  103:  3029 
  • 2b Börner A. Phosphorus Ligands in Asymmetric Catalysis: Synthesis and Applications   Wiley-VCH; Weinheim: 2008. 
  • 3 Wittig G. Geissler G. Justus Liebigs Ann. Chem.  1953,  580:  44 
  • 4 Staudinger H. Meyer J. Helv. Chim. Acta  1919,  2:  635 
  • 5 Mitsunobu O. Yamada M. Bull. Chem. Soc. Jpn.  1967,  40:  2380 
  • 6a Rauhut M, and Currier H. inventors; US  3074999. 
  • 6b Rauhut M. Currier H. Chem. Abstr.  1963,  58:  11224a 
  • 6c Morita K. Suzuki Z. Hirose H. Bull. Chem. Soc. Jpn.  1968,  41:  2815 
  • 7a Lu X. Zhang C. Xu Z. Acc. Chem. Res.  2001,  34:  535 
  • 7b Methot JL. Roush WR. Adv. Synth. Catal.  2004,  346:  1035 
  • 7c Lu X. Du Y. Lu C. Pure Appl. Chem.  2005,  12:  1985 
  • 7d Ye L. Zhou J. Tang Y. Chem. Soc. Rev.  2008,  37:  1140 
  • 7e Cowen BJ. Miller SJ. Chem. Soc. Rev.  2009,  38:  3102 
  • 8a Binger P. Büch HM. Top. Curr. Chem.  1987,  135:  77 
  • 8b Nakamura M. Isobe H. Nakamura E. Chem. Rev.  2003,  103:  1295 
  • 8c Fox JM. Yan N. Curr. Org. Chem.  2005,  9:  719 
  • 8d Rubin M. Rubina M. Gevorgyan V. Synthesis  2006,  1221 
  • 8e Rubin M. Rubina M. Gevorgyan V. Chem. Rev.  2007,  107:  3117 
  • 8f Marek I. Simaan S. Masarwa A. Angew. Chem. Int. Ed.  2007,  46:  7364 
  • 8g Magnus P. Littich R. Org. Lett.  2009,  11:  3938 
  • 8h Patel PR. Boger DL. J. Am. Chem. Soc.  2010,  132:  8527 
  • 9a Weiss R. Schlierf C. Angew. Chem. Int. Ed. Engl.  1971,  10:  811 
  • 9b Komendatov MI. Dommin IN. Bulucheva EV. Tetrahedron  1975,  31:  2495 
  • 9c Cho SK. Liebeskind LS. J. Org. Chem.  1987,  52:  2631 
  • 9d Padwa A. Kassir JM. Xu SL. J. Org. Chem.  1991,  56:  6971 
  • 9e Semmelhack MF. Ho S. Cohen D. Steigerwald M. Lee MC. Lee G. Gilbert AM. Wulff WD. Ball RG. J. Am. Chem. Soc.  1994,  116:  7108 
  • 9f Müller P. Granicher C. Helv. Chim. Acta  1995,  78:  129 
  • 9g Padwa A. Kassir JM. Xu SL. J. Org. Chem.  1997,  62:  1642 
  • 9h Ma S. Zhang J. J. Am. Chem. Soc.  2003,  125:  12386 
  • 9i Chuprakov S. Gevorgyan V. Org. Lett.  2007,  9:  4463 
  • 9j Marek I. Simaan S. Masarwa A. Angew. Chem. Int. Ed.  2007,  46:  7364 
  • 9k Wang Y. Fordyce EAF. Chen FY. Lam HW. Angew. Chem. Int. Ed.  2008,  47:  7350 
  • 9l Hoveyda AH. Lombardi PJ. O’Brien RV. Zhugralin AR. J. Am. Chem. Soc.  2009,  131:  8378 
  • 9m Li C. Zeng Y. Zhang H. Feng J. Zhang Y. Wang J. Angew. Chem. Int. Ed.  2010,  49:  6413 
  • 9n Miege F. Meyer C. Cossy J. Org. Lett.  2010,  12:  4144 
  • 9o Chen J. Ma S. Chem. Asian J.  2010,  5:  2415 
  • 10a Ma S. Zhang J. Cai Y. Lu L. J. Am. Chem. Soc.  2003,  125:  13954 
  • 10b Ma S. Zhang J. Lu L. Jin X. Cai Y. Hou H. Chem. Commun.  2005,  909 
  • 10c Chen J. Ma S.
    J. Org. Chem.  2009,  74:  5595 
  • 10d Chen J. Xin N. Ma S. Tetrahedron Lett.  2009,  50:  3175 
  • 11 In 2007, Gevorgyan and coworkers reported a phosphine-catalyzed sila-Morita-Baylis-Hillman reaction of cyclopropenes, but no ring-opening reaction occurred in this reaction. See: Chuprakov S. Malyshev DA. Trofimov A. Gevorgyan V. J. Am. Chem. Soc.  2007,  129:  14868 
  • 12a Ohe K. Fujita M. Matsumoto H. Tai Y. Miki K. J. Am. Chem. Soc.  2006,  128:  9270 
  • 12b Peng L. Zhang X. Ma M. Wang J. Angew. Chem. Int. Ed.  2007,  46:  1905 
  • 13a Trost BM. Li C. J. Am. Chem. Soc.  1994,  116:  3167 
  • 13b Zhang C. Lu X. Synlett  1995,  645 
  • 13c Du Y. Lu X. Zhang C. Angew. Chem. Int. Ed.  2003,  42:  1035 
  • 14 Davies HML. Romines KR. Tetrahedron  1988,  44:  3343 
15

Representative Procedure for the Synthesis of 2-Methoxy-3-methoxycarbonyl-5-butylfuran (2a) in a 5.0 mmol Scale
To a Schlenk reaction tube with a screw cap, evacuated and backfilled with argon, were added sequentially (2-furanyl)3P (116 mg, 0.50 mmol), cyclopropenyl dicarboxylate 1a (1.058 g, 4.99 mmol), and toluene (50 mL). The resulting mixture was refluxed at 150 ˚C. After 18 h the reaction was over (monitored by TLC). Evaporation and column chromatography on silica gel (eluent: PE-EtOAc = 20:1) afforded the desired product 2a 9o (1.005 g, 95% yield); oil. ¹H NMR (400 MHz, CDCl3): δ = 6.15 (t, J = 1.0 Hz, 1 H, CH=), 4.05 (s, 3 H, CO2CH3), 3.76 (s, 3 H, OCH3), 2.47 (td, J = 7.4, 0.8 Hz, 2 H, =CCH2), 1.60-1.50 (m, 2 H, CH2), 1.40-1.29 (m, 2 H, CH2), 0.90 (t, J = 7.4 Hz, 3 H, CH3). ¹³C NMR (100 MHz, CDCl3): δ = 163.6, 161.0, 146.0, 105.8, 91.2, 57.9, 51.0, 29.5, 27.1, 22.0, 13.7. MS (EI): m/z = 212 (19.03) [M+], 169 (100) [M+ - C3H7]. IR (neat): 2955, 2873, 1720, 1607, 1470, 1407, 1278, 1212, 1191, 1138, 1088 cm.