RSS-Feed abonnieren
DOI: 10.1055/s-0030-1259905
Asymmetric Tandem Reduction of 2-(Aroylmethyl)quinolines with Phosphine-Free Ru-TsDPEN Catalyst
Publikationsverlauf
Publikationsdatum:
15. März 2011 (online)

Abstract
The phosphine-free ruthenium complex containing chi-ral N-(p-toluenesulfonyl)-1,2-diphenylethylenediamine (TsDPEN) showed excellent stereoselectivity in the tandem asymmetric reduction of 2-(aroylmethyl)quinolines. The reaction involves transfer hydrogenation of aromatic ketones and hydrogenation of quinolines, giving 1,2,3,4-tetrahydroquinoline derivatives with up to 99% ee and 95:5 dr.
Key words
asymmetric catalysis - tandem reaction - quinolines - ruthenium - hydrogenation
- Supporting Information for this article is available online:
- Supporting Information (PDF)
- For recent reviews, see:
- 1a
Glorius F. Org. Biomol. Chem. 2005, 3: 4171Reference Ris Wihthout Link - 1b
Zhou Y.-G. Acc. Chem. Res. 2007, 40: 1357Reference Ris Wihthout Link - 1c
Kuwano R. Heterocycles 2008, 76: 909Reference Ris Wihthout Link - 2
Wang W.-B.Lu S.-M.Yang P.-Y.Han X.-W.Zhou Y.-G. J. Am. Chem. Soc. 2003, 125: 10536 - For selected recent examples of asymmetric hydrogenation of quinolines, see:
- 3a
Lu S.-M.Han X.-W.Zhou Y.-G. Adv. Synth. Catal. 2004, 346: 909Reference Ris Wihthout Link - 3b
Wang D.-W.Wang X.-B.Wang D.-S.Lu S.-M.Zhou Y.-G.Li Y.-X.
J. Org. Chem. 2009, 74: 2780Reference Ris Wihthout Link - 3c
Wang D.-S.Zhou Y.-G. Tetrahedron Lett. 2010, 51: 3014Reference Ris Wihthout Link - 3d
Xu L.-J.Lam KH.Ji JX.Fan Q.-H.Lo W.-H.Chan ASC. Chem. Commun. 2005, 1390Reference Ris Wihthout Link - 3e
Tang W.-J.Zhu S.-F.Xu L.-J.Zhou Q.-L.Fan Q.-H.Zhou H.-F.Lam K.Chan ASC. Chem. Commun. 2007, 613Reference Ris Wihthout Link - 3f
Wang ZJ.Deng GJ.Li Y.He YM.Tang WJ.Fan QH. Org. Lett. 2007, 9: 1243Reference Ris Wihthout Link - 3g
Reetz M.Li X. Chem. Commun. 2006, 2159Reference Ris Wihthout Link - 3h
Mršić N.Lefort L.Boogers JAF.Minnaard AJ.Feringa BL.de Vries JG. Adv. Synth. Catal. 2008, 350: 1081Reference Ris Wihthout Link - 3i
Tadaoka H.Cartigny D.Nagano T.Gosavi T.Ayad T.Genêt JP.Ohshima T.Ratovelomanana-Vidal V.Mashima K. Chem. Eur. J. 2009, 15: 9990Reference Ris Wihthout Link - 4a
Zhou HF.Li ZW.Wang ZJ.Wang TL.Xu LJ.He YM.Fan Q.-H.Pan J.Gu LQ.Chan ASC. Angew. Chem. Int. Ed. 2008, 47: 8464Reference Ris Wihthout Link - 4b
Wang Z.-J.Zhou H.-F.Wang T.-L.He Y.-M.Fan Q.-H. Green Chem. 2009, 11: 767Reference Ris Wihthout Link - 4c
Li Z.-W.Wang T.-L.He Y.-M.Wang Z.-J.Fan Q.-H.Pan J.Xu L.-J. Org. Lett. 2008, 10: 5265Reference Ris Wihthout Link - For selected examples of asymmetric hydrogenation of other heteroaromatic compounds, see: For indoles and pyrroles:
- 5a
Kuwano R.Sato K.Kurokawa T.Karube D.Ito Y. J. Am. Chem. Soc. 2000, 122: 7614Reference Ris Wihthout Link - 5b
Wang D.-S.Chen Q.-A.Li W.Yu C.-B.Zhou Y.-G.Zhang X. J. Am. Chem. Soc. 2010, 132: 8909Reference Ris Wihthout Link - 5c
Kuwano R.Kashiwabara M.Ohsumi M.Kusano H. J. Am. Chem. Soc. 2008, 130: 808Reference Ris Wihthout Link - 5d For furans, see:
Kaiser S.Smidt SP.Pfaltz A. Angew. Chem. Int. Ed. 2006, 45: 5194Reference Ris Wihthout Link - 5e For pyridines, see:
Legault CY.Charette AB. J. Am. Chem. Soc. 2005, 127: 8966Reference Ris Wihthout Link - 5f For isoquinolines, see:
Lu SM.Wang YQ.Han XW.Zhou Y.-G. Angew. Chem. Int. Ed. 2006, 45: 2260Reference Ris Wihthout Link - For quinoxalines, see:
- 5g
Tang W.-J.Xu L.-J.Fan Q.-H.Wang J.Fan B.-M.Lam K.-H.Chan ASC. Angew. Chem. Int. Ed. 2009, 48: 9135Reference Ris Wihthout Link - 5h
Mršić N.Jerphagnon T.Minnaard AJ.Feringa BL.de Vries JG. Adv. Synth. Catal. 2009, 351: 2549Reference Ris Wihthout Link - 6
Carey ARE.Fukata G.O’Ferrall RAM.Murphy MG. J. Chem. Soc., Perkin Trans. 2 1985, 1711 - For metal complexes containing diamine ligands for asymmetric hydrogenation, see:
- 7a
Ito M.Hirakawa M.Murata K.Ikariya T. Organometallics 2001, 20: 379Reference Ris Wihthout Link - 7b
Ohkuma T.Utsumi N.Tsutsumi K.Murata K.Sandoval CA.Noyori R. J. Am. Chem. Soc. 2006, 128: 8724Reference Ris Wihthout Link - 7c
Ohkuma T.Tsutsumi K.Utsumi N.Arai N.Noyori R.Murata K. Org. Lett. 2007, 9: 255Reference Ris Wihthout Link - 7d
Li C.Xiao J. J. Am. Chem. Soc. 2008, 130: 13208Reference Ris Wihthout Link - 7e
Chen f.Wang T.-L.He Y.-M.Ding Z.-Y.Li Z.-W.Xu L.-J.Fan Q.-H. Chem. Eur. J. 2011, 17: 1109Reference Ris Wihthout Link - 8
Wang X.-B.Wang D.-W.Lu S.-M.Yu C.-B.Zhou Y.-G. Tetrahedron: Asymmetry 2009, 20: 1040 - 9a
Noyori R.Hashiguchi S. Acc. Chem. Res. 1997, 30: 97Reference Ris Wihthout Link - 9b
Hashiguchi S.Fujii A.Takehara J.Ikariya T.Noyori R. J. Am. Chem. Soc. 1995, 117: 7562Reference Ris Wihthout Link - 10
Sidler DR.Sager JW.Bergan JJ.Wells KM.Bhupathy M.Volante RP. Tetrahedron: Asymmetry 1997, 8: 161 - 11 For transition-metal-catalyzed asymmetric
transfer hydrogenation of quinolines in acidic aqueous buffer solution,
see:
Wang C.Li C.Wu X.Pettman A.Xiao J. Angew. Chem. Int. Ed. 2009, 48: 6524Reference Ris Wihthout Link
References and Notes
Typical procedure for the Ru-catalyzed asymmetric ATH/AH reactions: Into a 50 mL glass-lined stainless steel reactor with a magnetic stirring bar was charged (R,R)-1b (0.6 mg, 0.001 mmol), substrate 2a (24.7 mg, 0.1 mmol) and degassed EtOH (1 mL) under a nitrogen atmosphere, and the mixture was stirred at r.t. for 24 h. Then, to the reaction mixture was added a solution of 1.0 M TfOH in EtOH (100 µL, 0.001 mmol, 1 mol% cf substrate) under a nitrogen atmosphere. The autoclave was closed, and H2 was initially introduced into the autoclave at a pressure of 50 atm, before being reduced to 1 atm. After this procedure was repeated three times, the autoclave was pressurized with H2 to 50 atm. Subsequently, the mixture was stirred under this H2 pressure at r.t. for another 12 h. After carefully releasing the hydrogen, the mixture was concentrated to afford the crude product. The conversion and diastereoselectivity were determined by ¹H NMR analysis of the crude product. Further purification was performed with a silica gel column (PE-CH2Cl2, 1:1) to give the pure product, (+)-1-phenyl-2-(1,2,3,4-tetrahydroquinolin-2-yl)ethanol (4a). Isolated yield: 94%; >95:5 dr; >99% ee; [α] d ²0 +67.9 (c 1.00, CHCl3); ¹H NMR (300 MHz, CDCl3): δ = 7.38-7.29 (m, 5 H), 7.00-6.95 (m, 2 H), 6.67-6.62 (m, 1 H), 6.49 (d, J = 7.8 Hz, 1 H), 5.02 (t, J = 6.6 Hz, 1 H), 3.55-3.47 (m, 1 H), 2.88-2.69 (m, 2 H), 1.97-1.90 (m, 3 H), 1.88-1.81 (m, 1 H); ¹³C NMR (75 MHz, CDCl3): δ = 143.34, 143.14, 128.30, 127.56, 126.61, 125.70, 124.69, 120.69, 116.73, 113.99, 71.07, 47.79, 43.67, 26.95, 25.15; HRMS (ESI): m/z [M + H]+ calcd for C17H20NO: 254.15394; found: 254.15385.