Abstract
An easy and efficient copper-catalyzed reaction for the synthesis
of polysubstituted pyrazoles from phenylhydrazones and dialkyl ethylenedicarboxylates
is described. This reaction can tolerate a range of functionalities,
and the corresponding adducts can be obtained in moderate to good
yields.
Key words
heterocycles - copper catalysis - hydrazones - dialkyl ethylenedicarboxylates - pyrazoles
References and Notes
<A NAME="RW06311ST-1A">1a</A>
Lamberth C.
Heterocycles
2007,
71:
1467
<A NAME="RW06311ST-1B">1b</A>
Elguero J. In
Comprehensive
Heterocyclic Chemistry
Vol. 5:
Katritzky AR.
Rees CW.
Scriven EFV.
Pergamon;
Oxford:
1966.
<A NAME="RW06311ST-1C">1c</A>
Eicher T.
Hauptmann S.
Speicher A.
The Chemistry of Heterocycles
2nd
ed.:
J. Wiley and Sons;
New York:
2003.
p.179
<A NAME="RW06311ST-2">2</A>
Elguero J.
Goya P.
Jagerovic N.
Silva AMS.
Pyrazoles as Drugs: Facts and Fantasies,
In Targets in Heterocyclic Systems Chemistry
and Properties
Vol. 6:
Attanasi OA.
Spinelli D.
Italian
Society of Chemistry;
Rome:
2002.
p.52
<A NAME="RW06311ST-3A">3a</A>
Sui Z.
Guan J.
Ferro MP.
Mccoy K.
Wachter MP.
Murray WV.
Singer M.
Steber M.
Ritchie DM.
Argentieri DC.
Bioorg. Med. Chem. Lett.
2000,
10:
601
<A NAME="RW06311ST-3B">3b</A>
Bekhit AA.
Abdelaziem T.
Bioorg.
Med. Chem.
2004,
12:
1935
<A NAME="RW06311ST-3C">3c</A>
Selvam C.
Jachak SM.
Thilagavathi R.
Chakraborti AK.
Bioorg. Med.
Chem. Lett.
2005,
15:
1793
<A NAME="RW06311ST-4">4</A>
Katoch-Rouse R.
Pavlova LA.
Caulder T.
Hoffman AF.
Mukhin AG.
Horti AG.
J.
Med. Chem.
2003,
46:
642
<A NAME="RW06311ST-5A">5a</A>
Stauffer SR.
Coletta CJ.
Tedesco R.
Nishiguchi G.
Carlson K.
Sun J.
Katzenellenbogen BS.
Katzenellenbogen JA.
J. Med. Chem.
2000,
43:
4934
<A NAME="RW06311ST-5B">5b</A>
Stauffer SR.
Huang Y.
Coletta CJ.
Tedesco R.
Katzenellenbogen JA.
Bioorg. Med. Chem.
2001,
9:
141
<A NAME="RW06311ST-6A">6a</A>
Knorr L.
Ber. Dtsch. Chem. Ges.
1883,
16:
2587
<A NAME="RW06311ST-6B">6b</A>
Kost AN.
Grandberg II.
Adv.
Heterocycl. Chem.
1966,
6:
347
<A NAME="RW06311ST-7A">7a</A>
Silva VLM.
Silva AMS.
Pinto DCGA.
Cavaleiro JAS.
Elguero J.
Eur. J. Org. Chem.
2004,
4348
<A NAME="RW06311ST-7B">7b</A>
Heller ST.
Natarajan SR.
Org.
Lett.
2006,
8:
2675
<A NAME="RW06311ST-8A">8a</A>
Huang YR.
Katzenellenbogen JA.
Org. Lett.
2000,
2:
2833
<A NAME="RW06311ST-8B">8b</A>
Katritzky AR.
Wang M.
Zhang S.
Voronkov MV.
Steel PJ.
J. Org. Chem.
2001,
66:
6787
<A NAME="RW06311ST-8C">8c</A>
Singer RA.
Caron S.
McDermott RE.
Arpin P.
Do NM.
Synthesis
2003,
1727
<A NAME="RW06311ST-8D">8d</A>
Aggarwal VK.
De Vicente J.
Bonnert RV.
J. Org. Chem.
2003,
68:
5381
<A NAME="RW06311ST-8E">8e</A>
Ahmed MSM.
Kobayashi K.
Mori A.
Org. Lett.
2005,
7:
4487
<A NAME="RW06311ST-9">9</A>
Monteiro N.
Balme G.
Delaunay T.
Org.
Lett.
2010,
12:
3328
<A NAME="RW06311ST-10">10</A>
Moses J.
Spiteri C.
Keeling S.
Org.
Lett.
2010,
12:
3368
<A NAME="RW06311ST-11">11</A>
Wada A.
Okitsu T.
Sato K.
Org.
Lett.
2010,
12:
3506
<A NAME="RW06311ST-12A">12a</A>
Trost BM.
Acc. Chem. Res.
2002,
35:
695
<A NAME="RW06311ST-12B">12b</A>
Trost BM.
Angew. Chem., Int. Ed. Engl.
1995,
34:
259
<A NAME="RW06311ST-13">13</A>
Winterton N.
Green
Chem.
2001,
3:
G73
<A NAME="RW06311ST-14A">14a</A>
Davies HML.
Long MS.
Angew. Chem. Int. Ed.
2005,
44:
3518
<A NAME="RW06311ST-14B">14b</A>
Wasa M.
Yu JQ.
J. Am. Chem. Soc.
2008,
130:
14058
<A NAME="RW06311ST-14C">14c</A>
Brasche G.
Buchwald SL.
Angew. Chem. Int.
Ed.
2008,
47:
1932
<A NAME="RW06311ST-14D">14d</A>
Hamada T.
Ye X.
Stahl SS.
J.
Am. Chem. Soc.
2008,
130:
833
<A NAME="RW06311ST-14E">14e</A>
Inamoto K.
Hasegawa C.
Hiroya K.
Doi T.
Org. Lett.
2008,
10:
5147
<A NAME="RW06311ST-14F">14f</A>
Reed S.
White MC.
J. Am. Chem. Soc.
2008,
130:
3316
<A NAME="RW06311ST-15A">15a</A>
Stahl SS.
Angew. Chem. Int. Ed.
2004,
43:
3400
<A NAME="RW06311ST-15B">15b</A>
Tsang WCP.
Munday R.
Brasche G.
Zheng N.
Buchwald LL.
J. Org. Chem.
2008,
73:
7603
<A NAME="RW06311ST-15C">15c</A>
Monguchi D.
Fujiwara T.
Furukawa H.
Mori A.
Org. Lett.
2009,
11:
1607
<A NAME="RW06311ST-16A">16a</A>
Brasche G.
Buchwald SL.
Angew.
Chem. Int. Ed.
2008,
47:
1932
<A NAME="RW06311ST-16B">16b</A>
Ueda S.
Nagasawa H.
Angew. Chem. Int. Ed.
2008,
120:
6511
<A NAME="RW06311ST-17A">17a</A>
Yan R.
Huang J.
Luo J.
Wen P.
Huang G.
Liang Y.
Synlett
2010,
1071
<A NAME="RW06311ST-17B">17b</A>
Yan R.
Luo J.
Wang CX.
Ma CW.
Huang G.
Liang Y.
J. Org. Chem.
2010,
75:
5395
<A NAME="RW06311ST-18">18</A>
Typical Procedure
for the Synthesis of Pyrazoles
An oven-dried reaction
tube was charged with CuI (3.8 mg, 0.02 mmol), NaOAc (16.4 mg, 0.20
mmol), benzaldehyde phenylhydrazone (1a,
47.0mg, 0.24 mmol), and dimethyl acetylenedicarboxylate (2a, 28.4mg, 0.20 mmol). Then DME (2 mL)
was added to the reaction system. The mixture was stirred at r.t.
for 2 h. After removal of the solvent under reduced pressure, the
crude product was purified by column chromatography on silica gel
(EtOAc-PE, 1:8) to give 3aa (49.0
mg, 73%) as white solid (Table
[²]
, entry 1); mp 152-154 ˚C. ¹H
NMR (400 MHz, CDCl3): δ = 7.75 (dd, J = 7.4, 1.8
Hz, 2 H), 7.54 (dd, J = 8.2,
1.4 Hz, 2 H), 7.50-7.40 (m, 6 H), 3.85 (s, 3 H), 3.82 (s,
3 H). ¹³C NMR (100 MHz, CDCl3): δ = 163.37,
160.64, 151.98, 139.03, 136.82, 131.33, 129.16, 129.06, 128.87,
128.77, 128.16, 124.53, 114.13, 53.11, 52.12. IR (neat): 2952, 1733,
1499, 1447, 1266, 911, 732 cm-¹. HRMS: m/z calcd for C19H16N2O4 [M + H]+: 337.1183;
found: 337.1175.
<A NAME="RW06311ST-19">19</A>
Cacchi S.
Bernini R.
Fabrizi G.
Sferrazza A.
Angew. Chem. Int. Ed.
2009,
48:
8078