Abstract
We report that ethylbenzenes can be directly oxidized to the
corresponding α-keto esters with molecular oxygen in the
presence of 48% aqueous HBr under visible light irradiation.
This synthetic procedure is the first example for direct preparation
of the corresponding α-keto esters from ethylbenzenes.
Key words
photooxidation - HBr - aerobic - ethylbenzene - α-keto ester
References and Notes
<A NAME="RU01411ST-1A">1a</A>
Comprehensive Organic Transformations
2nd
ed.:
Larock RC.
Wiley;
New
York:
1999.
p.1625
<A NAME="RU01411ST-1B">1b</A>
March’s
Advanced Organic Chemistry
6th ed.:
Smith MB.
March JA.
John
Wiley & Sons, Inc.;
Hoboken:
2007.
p.1745
<A NAME="RU01411ST-1C">1c</A>
Uyanik M.
Fukatsu R.
Ishihara K.
Chem. Asian
J.
2010,
5:
456
<A NAME="RU01411ST-2A">2a</A>
Kraus GA.
Zhang N.
J.
Org. Chem.
2000,
65:
5644
<A NAME="RU01411ST-2B">2b</A>
Akiyama T.
Suzuki M.
Chem. Commun.
1997,
2357
<A NAME="RU01411ST-3A">3a</A>
Loupy A.
Monteux DA.
Tetrahedron
2002,
58:
1541
<A NAME="RU01411ST-3B">3b</A>
Tanaka K.
Katsurada M.
Ohno F.
Shiga Y.
Oda M.
J.
Org. Chem.
2000,
65:
432
<A NAME="RU01411ST-3C">3c</A>
Axten JM.
Krim L.
Kung HF.
Winkler JD.
J.
Org. Chem.
1998,
63:
9628
<A NAME="RU01411ST-4A">4a</A>
Xiang J.
Ming L.
Bao L.
Chin. Chem. Lett.
2009,
20:
55
<A NAME="RU01411ST-4B">4b</A>
Lee JI.
J.
Korean Chem. Soc.
2004,
48:
103
<A NAME="RU01411ST-4C">4c</A>
Maeda H.
Hino N.
Yamauchi Y.
Ohmori H.
Chem. Pharm. Bull.
2000,
48:
1196
<A NAME="RU01411ST-4D">4d</A>
Kashima C.
Shirahata Y.
Tsukamoto Y.
Heterocycles
1998,
49:
459
<A NAME="RU01411ST-4E">4e</A>
Rambaud M.
Bakasse M.
Duguay G.
Villieras J.
Synthesis
1988,
564
<A NAME="RU01411ST-4F">4f</A>
Creary X.
J.
Org. Chem.
1987,
52:
5026
<A NAME="RU01411ST-4G">4g</A>
Itoh O.
Nagata T.
Nomura I.
Takanaga T.
Sugita T.
Ichikawa K.
Bull. Chem. Soc. Jpn.
1984,
57:
810
<A NAME="RU01411ST-4H">4h</A>
Weinstock LM.
Currie RB.
Lovell AV.
Synth. Commun.
1981,
11:
943
<A NAME="RU01411ST-4I">4i</A>
Nimitz JS.
Mosher
HS.
J.
Org. Chem.
1981,
46:
211
<A NAME="RU01411ST-5A">5a</A>
Tatlock JH.
J. Org. Chem.
1995,
60:
6221
<A NAME="RU01411ST-5B">5b</A>
Müller P.
Godoy J.
Tetrahedron
Lett.
1982,
23:
3661
<A NAME="RU01411ST-6A">6a</A>
Li L.-S.
Wu Y.-L.
Tetrahedron
Lett.
2002,
43:
2427
<A NAME="RU01411ST-6B">6b</A>
Nishinaga A.
Maruyama K.
Yoda K.
Okamoto H.
J. Chem. Soc., Chem.
Commun.
1990,
876
For recent examples, see:
<A NAME="RU01411ST-7A">7a</A>
Johnston EV.
Karlsson EA.
Tran L.-H.
Aakermark B.
Baeckvall J.-E.
Eur. J. Org. Chem.
2010,
1971
<A NAME="RU01411ST-7B">7b</A>
Yadav GD.
Motirale BG.
Chem. Eng.
J.
2010,
156:
328
<A NAME="RU01411ST-7C">7c</A>
Park HJ.
Lee JC.
Synlett
2009,
79
<A NAME="RU01411ST-7D">7d</A>
Hosseinzadeh R.
Tajbakhsh M.
Khaledi H.
J.
Chin. Chem. Soc.
2008,
55:
239
<A NAME="RU01411ST-7E">7e</A>
Oba M.
Okada Y.
Nishiyama K.
Shimada S.
Ando W.
Chem.
Commun.
2008,
5378
<A NAME="RU01411ST-7F">7f</A>
Shei C.-T.
Chien H.-L.
Sung K.
Synlett
2008,
1021
<A NAME="RU01411ST-7G">7g</A>
Pandey SK.
Bisai A.
Singh VK.
Synth. Commun.
2007,
37:
4099
<A NAME="RU01411ST-7H">7h</A>
Demizu Y.
Shiigi H.
Oda T.
Matsumura Y.
Onomura O.
Tetrahedron
Lett.
2007,
49:
48
<A NAME="RU01411ST-7I">7i</A>
Lu N.
Lin Y.-C.
Tetrahedron Lett.
2007,
48:
8823
<A NAME="RU01411ST-8A">8a</A>
Wu X.
Gorden AEV.
Eur.
J. Org. Chem.
2009,
503
<A NAME="RU01411ST-8B">8b</A>
Nakanishi M.
Bolm C.
Adv. Synth. Catal.
2007,
349:
861
<A NAME="RU01411ST-8C">8c</A>
Golchoubian H.
Ghaziani ANK.
Pol. J.
Chem.
2005,
79:
825
<A NAME="RU01411ST-8D">8d</A>
Das S.
Bhowmick T.
Punniyamurthy T.
Dey D.
NaTh J.
Chaudhuri MK.
Tetrahedron Lett.
2003,
44:
4915
<A NAME="RU01411ST-8E">8e</A>
Wentzei BB.
Donners MPJ.
Alster PL.
Feiters MC.
Nolte RJM.
Tetrahedron
2000,
56:
7797
<A NAME="RU01411ST-8F">8f</A>
Matsunaka K.
Iwahama T.
Sakaguchi S.
Ishii Y.
Tetrahedron Lett.
1999,
40:
2165
<A NAME="RU01411ST-8G">8g</A>
Zhao D.
Lee DG.
Synthesis
1994,
915
<A NAME="RU01411ST-8H">8h</A>
Choudary BM.
Reddy GVS.
Rao KK.
J. Chem. Soc., Chem.
Commun.
1993,
323
<A NAME="RU01411ST-8I">8i</A>
Wasserman HH.
Ives JL.
J.
Org. Chem.
1985,
50:
3573
<A NAME="RU01411ST-9A">9a</A>
Kobayashi T.
Yamashita H.
Sakakura T.
Tanaka M.
J.
Mol. Catal.
1987,
41:
379
<A NAME="RU01411ST-9B">9b</A>
Sakakura T.
Yamashita H.
Kobayashi T.
Hayashi T.
Tanaka M.
J.
Org. Chem.
1987,
52:
5733
<A NAME="RU01411ST-9C">9c</A>
Tanaka M.
Kobayashi T.
Sakakura T.
J.
Chem. Soc., Chem. Commun.
1985,
837
<A NAME="RU01411ST-9D">9d</A>
Ozawa F.
Kawasaki N.
Yamamoto T.
Yamamoto A.
Chem. Lett.
1985,
14:
567
<A NAME="RU01411ST-9E">9e</A>
Tanaka M.
Kobayashi T.
Sakakura T.
Itatani H.
Danno S.
Zushi K.
J. Mol. Catal.
1985,
32:
115
<A NAME="RU01411ST-10">10</A>
Schaefer JP.
Corey EJ.
J. Org. Chem.
1959,
24:
1825
<A NAME="RU01411ST-11">11</A>
Zhuang J.
Wang C.
Xie F.
Zhang W.
Tetrahedron
2009,
65:
9797
<A NAME="RU01411ST-12A">12a</A>
Izawa Y.
Ishiguro K.
Tomioka H.
Bull. Chem. Soc. Jpn.
1983,
56:
1490
<A NAME="RU01411ST-12B">12b</A>
Izawa Y.
Tomioka H.
Natsume M.
Beppu S.
Tsujii H.
J.
Org. Chem.
1980,
45:
4835
<A NAME="RU01411ST-13A">13a</A>
Hirashima S.
Nobuta T.
Tada N.
Miura T.
Itoh A.
Org. Lett.
2010,
12:
1620
<A NAME="RU01411ST-13B">13b</A>
Hirashima S.
Itoh A.
J. Synth. Org. Chem. Jpn.
2008,
66:
748
<A NAME="RU01411ST-13C">13c</A>
Hirashima S.
Itoh A.
Photochem. Photobiol. Sci.
2007,
6:
521
<A NAME="RU01411ST-13D">13d</A>
Sugai T.
Itoh A.
Tetrahedron Lett.
2007,
48:
9096
<A NAME="RU01411ST-13E">13e</A>
Hirashima S.
Itoh A.
Synthesis
2006,
1757
<A NAME="RU01411ST-13F">13f</A>
Itoh A.
Hashimoto S.
Kodama T.
Masaki Y.
Synlett
2005,
2107
<A NAME="RU01411ST-13G">13g</A>
Itoh A.
Kodama S.
Hashimoto S.
Masaki Y.
Synthesis
2003,
2289
<A NAME="RU01411ST-14">14</A>
Tada N.
Ban K.
Hirashima S.
Miura T.
Itoh A.
Org. Biomol.
Chem.
2010,
8:
4701
<A NAME="RU01411ST-15">15</A>
When 48% aq HBr (1.2 equiv)
and H2O (100 µL) were used as additive, ethylbenzene 1d was converted into α-bromo-acetophenone
(3d) in 68% yield.¹4
<A NAME="RU01411ST-16">16</A>
Typical Procedure:
An anhyd EtOAc solution (5 mL) of ethylbenzenes (0.3 mmol) and 48% aq
HBr (0.75 mmol) in a pyrex test tube equipped with an O2 balloon
was stirred and irradiated with four 22-W fluorescent lamps, which
were set up at a distance of 65 mm, for 20 h. The temperature of
the final stage of this reaction was about 40 ˚C. The reaction mixture
was concentrated under reduced pressure, and the pure product was
obtained by purification with preparative TLC.