RSS-Feed abonnieren
DOI: 10.1055/s-0030-1261180
Aerobic Oxybromination of Phenols Catalyzed by Sodium Nitrite under Mild Conditions
Publikationsverlauf
Publikationsdatum:
12. August 2011 (online)

Abstract
An efficient catalytic system for oxybromination of phenols under mild conditions has been developed, which utilizes sodium nitrite as the catalyst, dioxygen or air as the terminal oxidant, aqueous hydrobromic acid or molecular bromine as the bromine resource. From both the atom-economic and environmental points of view, the developed protocol is expected to provide a valuable synthetic method for practical applications in laboratory or industry.
Key words
oxybromination - phenols - atom economy - oxygen - sodium nitrite
- Supporting Information for this article is available online:
- Supporting Information (PDF)
- 1a
Ulmann’s
Encyclopedia of Industrial Chemistry
6th ed.:
Wiley-VCH;
Weinheim:
1998.
Reference Ris Wihthout Link
- 1b
Larock JRC. Comprehensive Organic Transformations, A Guide to Functional Group Preparation Wiley; New York: 1997.Reference Ris Wihthout Link - 2
Butler A.Walker JV. Chem. Rev. 1993, 93: 1937 - 3a
Heravi MM.Abdolhosseini N.Oskooie HA. Tetrahedron Lett. 2005, 46: 8959Reference Ris Wihthout Link - 3b
Kosolapoff GM.
J. Am. Chem. Soc. 1953, 75: 3596Reference Ris Wihthout Link - 4a
Venkateswarlu K.Suneel K.Das B.Reddy KN.Reddy TS. Synth. Commun. 2009, 39: 215Reference Ris Wihthout Link - 4b
Das B.Venkateswarlu K.Krishnaiah M.Holla H. Tetrahedron Lett. 2006, 47: 8693Reference Ris Wihthout Link - 4c
Ganguly NC.Dutta S. Synthesis 2005, 1103Reference Ris Wihthout Link - 4d
Oberhauser T. J. Org. Chem. 1997, 62: 4504Reference Ris Wihthout Link - 5
Viroopakshappa J.Jagannadham V. Indian J. Chem., Sect. A: Inorg., Bio-inorg., Phys., Theor. Anal. Chem. 2004, 43: 532 - 6a
Toda F.Schmeyers J. Green Chem. 2003, 5: 701Reference Ris Wihthout Link - 6b
Fuchs B.Belsky Y.Tartakovsky E.Zizuashvili J.Weinman S. J. Chem. Soc., Chem. Commun. 1982, 778Reference Ris Wihthout Link - 7
Joshi AV.Baidossi M.Mukhopadhyay S.Sasson Y. Org. Process Res. Dev. 2004, 8: 568 - 8
Barhate NB.Gajare AS.Wakharkar RD.Bedekar AV. Tetrahedron 1999, 55: 11127 - 9a
Narender N.Mohan KVVK.Kulkarni SJ.Raghavan KV. J. Chem. Res., Synop. 2003, 9: 597Reference Ris Wihthout Link - 9b
Narender N.Srinivasu P.Prasad MR.Kulkarni SJ.Raghavan KV. Synth. Commun. 2002, 32: 2313Reference Ris Wihthout Link - 10a
Adibi H.Hajipour AR.Hashemi M. Tetrahedron Lett. 2007, 48: 1255Reference Ris Wihthout Link - 10b
Dewkar GK.Narina SV.Sudalai A. Org. Lett. 2003, 5: 4501Reference Ris Wihthout Link - 10c
Roy SC.Guin C.Rana KK.Matit G. Tetrahedron Lett. 2001, 42: 6941Reference Ris Wihthout Link - 11a
Kikushima K.Moriuchi T.Hirao T. Tetrahedron Lett. 2010, 51: 340Reference Ris Wihthout Link - 11b
Wang J.Wang W.Li JH. Green Chem. 2010, 12: 2124Reference Ris Wihthout Link - 11c
Podgoršek A.Zupan M.Iskra J. Angew. Chem. Int. Ed. 2009, 48: 8424Reference Ris Wihthout Link - 11d
Yang LJ.Zhan L.Stahl SS. Chem. Commun. 2009, 6460Reference Ris Wihthout Link - 11e
Das DP.Parida KM. Catal. Commun. 2006, 7: 68Reference Ris Wihthout Link - 11f
Maurya MR.Saklani H.Agarwal S. Catal. Commun. 2004, 5: 563Reference Ris Wihthout Link - 11g
Narender N.Mohan KVVK.Reddy RV.Srinivasu P.Kulkarni SJ.Raghavan KV. J. Mol. Catal. A: Chem. 2003, 192: 73Reference Ris Wihthout Link - 11h
Choudary BM.Sudha Y.Reddy PN. Synlett 1994, 450Reference Ris Wihthout Link - 12
Neumann R.Assael I. J. Chem. Soc., Chem. Commun. 1988, 1285 - 13
Raja R.Ratnasamy P. J. Catal. 1997, 170: 244 - 14
Menini L.Parreira LA.Gusevskaya EV. Tetrahedron Lett. 2007, 48: 6401 - 15
Kikushima K.Moriuchi T.Hirao T. Chem. Asian J. 2009, 4: 1213 - 16
Zhang GF.Liu RH.Xu Q.Ma LX.Liang XM. Adv. Synth. Catal. 2006, 348: 862
References and Notes
Representative
Procedure
In a 250 mL Schlenk flask equipped with
magnetic stirrer, filled with dioxygen beforehand, was placed phenol
(0.4706 g, 5.00 mmol) dissolved in MeCN (10.0 mL) under O2.
Then a 42% aq solution of HBr (1.0125 g, 5.25 mmol) was
added to the solution. Next, the NaNO2 (0.0103 g, 0.15
mmol) was added in one portion, and the system was immediately sealed.
The reaction mixture was stirred at 25 ˚C. After
the reaction, the solvent was removed under vacuum, and the residue
was washed with sat. NaHCO3 solution and extracted with
Et2O. The organic extract was dried over with anhyd Na2SO4.
After removing the solvent under vacuum, the residue was purified
by column chromatography to afford the desired products, 2- and
4-bromophenol. The yield was 0.7962 g (92%).
4-Bromophenol
¹H
NMR (400 MHz, CDCl3): δ = 6.70-6.72
(m, 2 H, ArH), 7.31-7.33 (m, 2 H, ArH) ppm. ¹³C
NMR (100 MHz, CDCl3): δ = 113.0, 117.1,
132.5, 154.2 ppm.
2-Bromophenol
¹H
NMR (400 MHz, CDCl3): δ = 5.51 (s,
1 H, OH), 6.78-6.83 (m, 1 H, ArH), 7.00-7.04 (m,
1 H, ArH), 7.19-7.25 (m, 1 H, ArH), 7.44-7.47
(m, 1 H, ArH) ppm. ¹³C NMR (100 MHz,
CDCl3): δ = 110.1, 116.1, 121.7, 129.0,
132.0, 152.0 ppm.