RSS-Feed abonnieren
DOI: 10.1055/s-0030-1261198
One-Pot Synthesis of Pyrano[2,3-b]quinolines from Enaminones under Solvent-Free Conditions
Publikationsverlauf
Publikationsdatum:
30. August 2011 (online)
Abstract
A facile and efficient one-pot synthesis of pyrano[2,3-b]quinolines has been developed via the Combes-type reaction of readily available enaminones, 2-arylamino-3-acetyl-5,6-dihydro-4H-pyrans, mediated by trifluoromethanesulfonic acid under solvent-free conditions.
Key words
pyranoquinolines - Combes-type reaction - enaminones - trifluoromethanesulfonic acid - solvent-free
- Supporting Information for this article is available online:
               
               
 - Supporting Information (PDF) (opens in new window)
 
- 1a 
             
            
Mabire D.Coupa S.Adelinet C.Poncelet A.Simonnet Y.Venet M.Wouters R.Lesage ASJ.Beijsterveldt LV.Bischoff F. J. Med. Chem. 2005, 48: 2134 - 1b 
             
            
Michael JP. Nat. Prod. Rep. 2002, 19: 742 - 1c 
             
            
Michael JP. Nat. Prod. Rep. 2003, 20: 476 - 1d 
             
            
Michael JP. Nat. Prod. Rep. 2004, 21: 650 - 1e 
             
            
Michael JP. Nat. Prod. Rep. 2005, 22: 627 - 1f 
             
            
Carling RW.Leeson PD.Moseley AM.Baker R.Forster AC.Grimwood S.Kemp JA.Marshall GR. J. Med. Chem. 1992, 35: 1942 - 2a 
             
            
Leeson PD.Carling RW.Moore KW.Moseley AM.Smith JD.Stevenson G.Chan T.Baker R.Foster AC.Grimwood S.Kemp JA.Marshall GR.Hoogsteen K. J. Med. Chem. 1992, 35: 1954 - 2b 
             
            
Sekar M.Rajendra KJ.Prasad J. Nat. Prod. 1998, 61: 294 - 2c 
             
            
Michael JP. Nat. Prod. Rep. 1999, 16: 697 - 2d 
             
            
Chilin A.Marzaro G.Marzano C.Via LD.Ferlin MG.Pastorini G.Guiotto A. Bioorg. Med. Chem. 2009, 17: 523 - 3a 
             
            
Johnson JV.Rauckman S.Baccanari PD.Roth B. J. Med. Chem. 1989, 32: 1942 - 3b 
             
            
Martin-Santamaria S.Munoz-Muriedas J.Luque J.Gago F. J. Med. Chem. 2004, 47: 4471 - 3c 
             
            
Yamada N.Kadowaki S.Takahashi K.Umezu K. Biochem. Pharmacol. 1992, 44: 1211 - 3d 
             
            
Magesh CJ.Makesh SV.Perumal PT. Bioorg. Med. Chem. Lett. 2004, 14: 2035 - 3e 
             
            
Gould KJ.Manners CN.Payling DW.Suschitzky JL.Wells E. J. Med. Chem. 1988, 31: 1445 - 3f 
             
            
Verma AK.Aggarwal T.Rustagi V.Larock RC. Chem. Commum. 2010, 46: 4064 - 4a 
             
            
Corral RA.Orazi OO. Tetrahedron Lett. 1967, 7: 583 - 4b 
             
            
Sekar M.Prasad KJRJ. Nat. Prod. 1998, 61: 294 - 4c 
             
            
Puricelli L.Innocenti G.Delle Monache G.Caniato R.Filippini R.Cappelletti EM. Nat. Prod. Lett. 2002, 16: 95 - 4d 
             
            
Marco JL.Carreiras MC. Mini-Rev. Med. Chem. 2003, 3: 518 - 5a 
             
            
Godet T.Vaxelaire C.Michel C.Milet A.Belmont P. Chem. Eur. J. 2007, 3: 5632 - 5b 
             
            
Butenschon I.Moller K.Hansel W. J. Med. Chem. 2001, 44: 1249 - 5c 
             
            
Kalita KP.Baruah B.Bhuyan PJ. Tetrahedron Lett. 2006, 47: 7779 - 5d 
             
            
Kobayashi S.Araki M.Ishitani H.Nagayama S.Hachiya I. Synlett 1995, 233 - 5e 
             
            
Makioka Y.Shindo T.Taniguchi Y.Takaki K.Fujwara Y. Synthesis 1995, 801 - 6a 
             
            
Baudelle R.Melnyk P.Deprez B.Tartar A. Tetrahedron 1998, 54: 4125 - 6b 
             
            
Worth DF.Perricone SC.Elsager EF. J. Heterocycl. Chem. 1970, 7: 1353 - 6c 
             
            
Cabral J.Laszlo P. Tetrahedron Lett. 1989, 30: 7237 - 6d 
             
            
Babu G.Perumal PT. Tetrahedron Lett. 1998, 39: 3225 - 6e 
             
            
Crousse B.Begue JP.Delpon DB. Tetrahedron Lett. 1998, 39: 5765 - 6f 
             
            
Ma Y.Qian C.Xie M.Sun J. J. Org. Chem. 1999, 64: 6462 - 7a 
             
            
Verma AK.Rustagi V.Aggarwal R.Singh Amit P. J. Org. Chem. 2010, 75: 7691 - 7b 
             
            
Wang X.Zhou J.Yin M.Yang K.Tu S. J. Comb. Chem. 2010, 12: 266 - 7c 
             
            
Wang X.Li Q.Wu J.Tu S. J. Comb. Chem. 2009, 11: 433 - 7d 
             
            
Kobayashi S.Ishitani H.Nagayama S. Synthesis 1995, 1195 - 7e 
             
            
Kudale AA.Kendall J.Miller DO.Collins JL.Bodwell GJ. J. Org. Chem. 2008, 73: 8437 - 8a 
             
            
Povarov LS. Russ. Chem. Rev. Engl. Transl. 1967, 36: 656 - 8b 
             
            
Boger DL.Weinreb SMJ. Hetero Diels-Alder Methodology in Organic Synthesis Academic Press; San Diego: 1987. Chap. 2 and 9. - 8c 
             
            
Weinreb SM. In Comprehensive Organic Synthesis Vol. 5:Trost BM.Fleming I. Pergamon; Oxford: 1991. p.401 - 8d 
             
            
Yadav JS.Reddy BVS.Reddy JSS.Rao RS. Tetrahedron 2003, 59: 1599 - 8e 
             
            
Srinivas KVNS.Das B. Synlett 2004, 1715 - 9 
             
            
Zhang Q.Zhang Z.Yan Z.Liu Q.Wang T. Org. Lett. 2007, 9: 3651 - For reviews, see:
 - 10a 
             
            
Greenhill JV. Chem. Soc. Rev. 1977, 6: 277 - 10b 
             
            
Abdulla RF.Brinkmeyer RS. Tetrahedron 1979, 35: 1675 - 10c 
             
            
Elassar A.-ZA.El-Khair AA. Tetrahedron 2003, 59: 8463 - 10d 
             
            
Stanovnik B.Svete J. Chem. Rev. 2004, 104: 2433 - 11a 
             
            
Chen C.Chang V.Cai X.Duesler E.Mariano PS. J. Am. Chem. Soc. 2001, 123: 6433 - 11b 
             
            
Pigge FC.Ghasedi F.Rath NP. J. Org. Chem. 2002, 67: 4547 - 11c 
             
            
Tsai AI.Chuang C.-P. Tetrahedron 2006, 62: 2235 - 11d 
             
            
Porcheddu A.Giacomelli G.De Luca L.Ruda AM. J. Comb. Chem. 2004, 6: 105 - 11e 
             
            
White JD.Ihle DC. Org. Lett. 2006, 8: 1081 - 11f 
             
            
Davis FA.Zhang J.Li Y.Xu H.DeBrosse C. J. Org. Chem. 2005, 70: 5413 - 12a 
             
            
Huang J.Liang Y.Pan W.Yang Y.Dong D. Org. Lett. 2007, 9: 5345 - 12b 
             
            
Zhang R.Zhang D.Guo Y.Zhou G.Jiang Z. J. Org. Chem. 2008, 73: 9504 - 12c 
             
            
Zhang R.Liang Y.Zhou G.Wang K.Dong D.
J. Org. Chem. 2008, 73: 8089 - 12d 
             
            
Zhang R.Zhou Y.Liang Y.Jiang Z.Dong D. Synthesis 2009, 2497 - 13a 
             
            
Xiang D.Yang Y.Zhang R.Liang Y.Pan W.Huang J.Dong D. J. Org. Chem. 2007, 72: 8593 - 13b 
             
            
Xiang D.Huang P.Wang K.Zhou G.Liang Y.Dong D. Chem. Commum. 2008, 6236 - 16a 
             
            
Combes A. Bull. Soc. Chim. Fr. 1883, 49: 89 - 16b 
             
            
Manske RHF. Chem. Rev. 1942, 30: 113 - 16c 
             
            
Bergstrom FW. Chem. Rev. 1944, 35: 77 - 16d 
             
            
Born JL. J. Org. Chem. 1972, 37: 3952 - 16e 
             
            
Claret PA. In Comprehensive Organic Chemistry Vol. 4:Barton D. Pergamon Press; Oxford: 1979. p.155 - 16f 
             
            
Yamashkin SA.Yudin LG.Kost AN. Khim. Geterotsikl. Soedin. 1992, 1011 - 16g 
             
            
Yamashkin SA.Yudin LG.Kost AN. Chem. Heterocycl. Compd. 1993, 28: 845 - 17a 
             
            
Fan J.Wan C.Sun G.Wang Z. J. Org. Chem. 2008, 73: 8608 - 17b 
             
            
Yamashkin SA.Trushkov IV.Tomilin OB.Terekhin II.Yurovskaya MA. Chem. Heterocycl. Compd. 1998, 34: 9 - 17c 
             
            
Volochnyuk DM.Ryabukhin SV.Plaskon AS.Dmytriv YV.Grygorenko OO.Mykhailiuk PK.Krotko DG.Pushechnikov A.Tolmachev AA. J. Comb. Chem. 2010, 12: 510 - 17d 
             
            
Marcos A.Pedregal C.Avendano C. Tetrahedron 1991, 47: 7459 
References and Notes
         Typical Procedure
            for the Synthesis of Pyrano[2,3-
         b
         ]quinolines (2a as an example)
         
The
         substrate 1a (217 mg, 1.0 mmol) and CF3SO3H
         (0.35 mL, 4.0 mmol) was well stirred at 80 ˚C for 6.0 h.
         When the substrate 1a had been consumed
         (monitored by TLC), the mixture was poured into sat. aq NaCl (50
         mL), neutralized with sat. aq NaHCO3, and extracted with
         CH2Cl2 (3 × 20 mL).
         The combined organic phase was washed with H2O (3 × 20
         mL), dried over MgSO4, filtered, and concentrated in vacuo.
         The crude product was purified by flash chroma-tography (silica
         gel, PE-Et2O = 2:1) to give 2a as a white solid (173 mg, 87%).
            Selected Data for Compound 2a
         
White
         solid; mp 158-161 ˚C. ¹H
         NMR (400 MHz, CDCl3): δ = 2.09-2.15
         (m, 2 H), 2.55 (s, 3 H), 2.93 (t, J = 6.8
         Hz, 2 H), 4.40 (t, J = 5.2
         Hz, 2 H), 7.37 (t, J = 8.0
         Hz, 1 H), 7.57 (t, J = 8.0
         Hz, 1 H), 7.81 (d, J = 8.4
         Hz 1 H), 7.87 (d, J = 8.4 Hz,
         1 H). ¹³C NMR (100 MHz, CDCl3): δ = 13.3,
         21.8, 23.4, 66.5, 116.4, 123.5, 125.0, 127.6, 128.5, 144.0, 145.3,
         159.4. IR (KBr): 2945, 1591, 1502, 1408, 1317, 1246, 1178, 1124, 980,
         756 cm-¹. Anal. Calcd for C13H13NO:
         C, 78.36; H, 6.58; N, 7.03. Found: C, 78.12; H, 6.33; N, 7.31.
For the analytical data of 2, see Supporting Information.