Subscribe to RSS
DOI: 10.1055/s-0030-1270444
© Georg Thieme Verlag KG Stuttgart · New York
Molekularbiologie des Gehörs
Molecular Biology of HearingPublication History
Publication Date:
26 April 2011 (online)
Zusammenfassung
Das Innenohr ist das empfindlichste Sinnesorgan des Menschen und kann in drei funktionelle Abschnitte unterteilt werden: Corti-Organ, Stria vascularis und Spiralganglion. Der adäquate Reiz für das Hörorgan ist Schall, der durch den äußeren Gehörgang an das Trommelfell gelangt und über das Mittelohr auf das Innenohr übertragen wird. Dort befinden sich die inneren Haarzellen, die für den entscheidenden Schritt des Hörvorgangs, die Mechanotransduktion, verantwortlich sind. Dieser Mechanismus ermöglicht die Umwandlung des mechanischen Schallsignals in ein bioelektrisches bzw. biochemisches Signal. Die Stria vascularis bildet das endokochleäre Potenzial und ist verantwortlich für die Aufrechterhaltung der kochleären Ionenhomöostase. Das Spiralganglion bildet synaptische Kontakte mit den Haarzellen und ist aufgebaut aus Neuronen, die elektrische Signale von der Cochlea ins zentrale Nervensystem übermitteln.
In den vergangenen Jahren konnten entscheidende Fortschritte bei der Erforschung der molekularen Grundlagen des Hörvorgangs erzielt werden. Immer mehr Gene und Proteine, die für den Vorgang des Hörens verantwortlich sind, können identifiziert und charakterisiert werden. Das ständig wachsende Wissen über diese Gene hilft nicht nur, den Mechanismus des Hörens besser zu verstehen, sondern trägt auch zu einem tieferen Verständnis der molekularen Grundlagen von genetisch bedingten Hörstörungen bei. Diese Grundlagenforschung stellt die Voraussetzung für die Entwicklung molekulargenetischer Diagnoseverfahren sowie moderner Therapieformen für die Schwerhörigkeit dar.
Abstract
Molecular Biology of Hearing
The inner ear is our most sensitive sensory organ and can be subdivided into 3 functional units: organ of Corti, stria vascularis and spiral ganglion. The appropriate stimulus for the organ of hearing is sound which travels through the external auditory canal to the middle ear where it is transmitted to the inner ear. The inner ear habors the hair cells, the sensory cells of hearing. The inner hair cells are capable of mechanotransduction, the transformation of mechanical force into an electrical signal, which is the basic principle of hearing. The stria vascularis generates the endocochlear potential and maintains the ionic homeostasis of the endolymph. The dendrites of the spiral ganglion form synaptic contacts with the hair cells. The spiral ganglion is composed of neurons that transmit the electrical signals from the cochlea to the central nervous system. In the past years there was significant progress in research on the molecular basis of hearing. More and more genes and proteins which are related to hearing can be identified and characterized. The increasing knowledge on these genes contributes not only to a better understanding of the mechanism of hearing but also to a deeper understanding of the molecular basis of hereditary hearing loss. This basic research is a prerequisite for the development of molecular diagnostics and novel therapies for hearing loss.
Schlüsselwörter
Innenohr - Cochlea - Haarzelle - Corti-Organ - Spiralganglion - Taubheit
Key words
inner ear - cochlea - hair cell - organ of Corti - spiral ganglion - deafness
Literatur
- 1 Santi PA, Tsuprun VL. Cochlear microanatomy and ultrastructure. In:, Jahn AF,, Santos-Sacchi J, (Eds.). Physiology of the Ear. Singular Publishing, San Diego, CA; 2001
- 2 Slepecky NB. Cochlear structure. In: Dallos P, Popper AN, Fay R (Eds.). The Cochlea, Springer, New York; 1996: 44-129
- 3 Boenninghaus & Lenarz .Innenohr (Labyrinth). In: Boenninghaus & Lenarz. HNO Springer Medizin Verlag; 2007: 15-19
- 4 Starlinger V, Masaki K, Heller S. Auditory physiology: Inner ear. In: Glasscock-Shambaugh Surgery of the Ear. People's Medical Publishing House; 2010: 73-83
- 5 Rhys Evans PH, Comis SD, Osborne MP, Pickles JO, Jeffries DJ. Cross-links between stereocilia in the human organ of Corti. J Laryngol Otol. 1985; 99 11-19
- 6 Raphael Y, Altschuler RA. Structure and innervation of the cochlea. Brain Re Bull. 2003; 60 397-422
- 7 Von Bekesy G. Zur Theorie des Hörens bei der Schallaufnahme durch Knochenleitung. Annalen der Physik. 1932; 405 111-136
- 8 Hudspeth AJ. How hearing happens. Neuron. 1997; 19 947-950
- 9 Vollrath MA, Kwan KY, Corey DP. The micromachinery of mechanotransduction in hair cells. Annu Rev Neurosci. 2007; 30 339-365
- 10 LeMasurier M, Gillespie PG. Hair-cell mechanotransduction and cochlear amplification. Neuron. 2005; 48 403-415
- 11 Gillespie PG, Walker RG. Molecular basis of mechanosensory transduction. Nature. 2001; 413 194-202
- 12 Pickles JO, Comis SD, Osborne MP. Cross-links between stereocilia in the guinea pig organ of Corti, and their possible relation to sensory transduction. Hear Res. 1984; 15 103-112
- 13 Hudspeth AJ, Gillespie PG. Pulling springs to tune transduction: adaptation by hair cells. Neuron. 1994; 12 1-9
- 14 Hudspeth AJ. How the ear's works work: mechanoelectrical transduction and amplification by hair cells. C R Biol. 2005; 328 155-162
- 15 Rhode WS, Geisler CD. Model of the displacement between opposing points on the tectorial membrane and reticular lamina. J Acoust Soc Am. 1967; 42 185-190
- 16 Corey DP, Hudspeth AJ. Kinetics of the receptor current in bullfrog saccular hair cells. J Neurosci. 1983; 3 962-976
- 17 Gillespie PG, Müller U. Mechanotransduction by hair cells: models, molecules, and mechanisms. Cell. 2009; 139 33-44
- 18 Schwander M, Kachar B, Müller U. Review series: The cell biology of hearing. J Cell Biol. 2010; 190 9-20
- 19 Sakaguchi H, Tokita J, Müller U, Kachar B. Tip links in hair cells: molecular composition and role in hearing loss. Curr Opin Otolaryngol Head Neck Surg. 2009; 17 388-393
- 20 Müller U. Cadherins and mechanotransduction by hair cells. Curr Opin Cell Biol. 2008; 20 557-566
- 21 Kazmierczak P, Sakaguchi H, Tokita J, Wilson-Kubalek EM, Milligan RA, Müller U, Kachar B. Cadherin 23 and protocadherin 15 interact to form tip-link filaments in sensory hair cells. Nature. 2007; 449 87-91
- 22 Ahmed ZM, Goodyear R, Riazuddin S, Lagziel A, Legan PK, Behra M, Burgess SM, Lilley KS, Wilcox ER, Riazuddin S, Griffith AJ, Frolenkov GI, Belyantseva IA, Richardson GP, Friedman TB. The tip-link antigen, a protein associated with the transduction complex of sensory hair cells, is protocadherin-15. J Neurosci. 2006; 26 7022-7034
- 23 Corey DP. What is the hair cell transduction channel?. J Physiol. 2006; 576 23-28
- 24 Gillespie PG, Dumont RA, Kachar B. Have we found the tip link, transduction channel, and gating spring of the hair cell?. Curr Opin Neurobiol. 2005; 15 389-396
- 25 Gillespie PG. Myosin I and adaptation of mechanical transduction by the inner ear. Philos Trans R Soc Lond B Biol Sci. 2004; 359 1945-1951
- 26 Ahmed ZM, Riazuddin S, Riazuddin S, Wilcox ER. The molecular genetics of Usher syndrome. Clin Genet. 2003; 63 431-444
- 27 Kremer H, van Wijk E, Märker T, Wolfrum U, Roepman R. Usher syndrome: molecular links of pathogenesis, proteins and pathways. Hum Mol Genet. 2006; 15 Spec No 2: R262–270
- 28 Weil D, Blanchard S, Kaplan J, Guilford P, Gibson F, Walsh J, Mburu P, Varela A, Levilliers J, Weston MD. et al . Defective myosin VIIA gene responsible for Usher syndrome type 1B. Nature. 1995; 374 60-61
- 29 Weil D, Levy G, Sahly I, Levi-Acobas F, Blanchard S, El-Amraoui A, Crozet F, Philippe H, Abitbol M, Petit C. Human myosin VIIA responsible for the Usher 1B syndrome: a predicted membrane-associated motor protein expressed in developing sensory epithelia. Proc Natl Acad Sci U S A. 1996; 93 3232-3237
- 30 Maubaret C, Griffoin JM, Arnaud B, Hamel C. Novel mutations in MYO7A and USH2A in Usher syndrome. Ophthalmic Genet. 2005; 26 25-29
- 31 Yan D, Liu XZ. Genetics and pathological mechanisms of Usher syndrome. J Hum Genet. 2010; 55 327-335
- 32 Saihan Z, Webster AR, Luxon L, Bitner-Glindzicz M. Update on Usher syndrome. Curr Opin Neurol. 2009; 22 19-27
- 33 Dallos P. Cochlear amplification, outer hair cells and prestin. Curr Opin Neurobiol. 2008; 18 370-376
- 34 Holt JR, Gillespie SK, Provance DW, Shah K, Shokat KM, Corey DP, Mercer JA, Gillespie PG. A chemical-genetic strategy implicates myosin-1c in adaptation by hair cells. Cell. 2002; 108 371-381
- 35 Hudspeth AJ. Making an effort to listen: mechanical amplification in the ear. Neuron. 2008; 59 530-545
- 36 Dallos P, Wu X, Cheatham MA, Gao J, Zheng J, Anderson CT, Jia S, Wang X, Cheng WH, Sengupta S, He DZ, Zuo J. Prestin-based outer hair cell motility is necessary for mammalian cochlear amplification. Neuron. 2008; 58 333-339
- 37 Zenner HP, Arnold W, Gitter AH. Outer hair cells as fast and slow cochlear amplifiers with a bidirectional transduction cycle. Acta Otolaryngol. 1988; 105 457-462
- 38 Brownell WE, Bader CR, Bertrand D, de Ribaupierre Y. Evoked mechanical responses of isolated cochlear outer hair cells. Science. 1985; 227 194-196
- 39 Fettiplace R, Hackney CM. The sensory and motor roles of auditory hair cells. Nat Rev Neurosci. 2006; 7 19-29
- 40 Ashmore J. Cochlear outer hair cell motility. Physiol Rev. 2008; 88 173-210
- 41 Zheng J, Shen W, He DZ, Long KB, Madison LD, Dallos P. Prestin is the motor protein of cochlear outer hair cells. Nature. 2000; 405 149-155
- 42 Dallos P, Zheng J, Cheatham MA. Prestin and the cochlear amplifier. J Physiol. 2006; 576 37-42
- 43 Liberman MC, Gao J, He DZ, Wu X, Jia S, Zuo J. Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier. Nature. 2002; 419 300-304
- 44 Liu XZ, Ouyang XM, Xia XJ, Zheng J, Pandya A, Li F, Du LL, Welch KO, Petit C, Smith RJ, Webb BT, Yan D, Arnos KS, Corey D, Dallos P, Nance WE, Chen ZY. Prestin, a cochlear motor protein, is defective in non-syndromic hearing loss. Hum Mol Genet. 2003; 12 1155-1162
- 45 Toth T, Deak L, Fazakas F, Zheng J, Muszbek L, Sziklai I. A new mutation in the human pres gene and its effect on prestin function. Int J Mol Med. 2007; 20 545-550
- 46 Peng AW, Ricci AJ. Somatic motility and hair bundle mechanics, are both necessary for cochlear amplification?. Hear Res. 2010; (im Druck)
- 47 Legan PK, Lukashkina VA, Goodyear RJ, Kössi M, Russell IJ, Richardson GP. A targeted deletion in alpha-tectorin reveals that the tectorial membrane is required for the gain and timing of cochlear feedback. Neuron. 2000; 28 273-285
- 48 Moreno-Pelayo MA, Goodyear RJ, Mencía A, Modamio-Høybjør S, Legan PK, Olavarrieta L, Moreno F, Richardson GP. Characterization of a spontaneous, recessive, missense mutation arising in the Tecta gene. J Assoc Res Otolaryngol. 2008; 9 202-214
- 49 Cohen-Salmon M, El-Amraoui A, Leibovici M, Petit C. Otogelin: a glycoprotein specific to the acellular membranes of the inner ear. Proc Natl Acad Sci U S A. 1997; 94 14450-14455
- 50 Simmler MC, Cohen-Salmon M, El-Amraoui A, Guillaud L, Benichou JC, Petit C, Panthier JJ. Targeted disruption of otog results in deafness and severe imbalance. Nat Genet. 2000; 24 139-143
- 51 Zwaenepoel I, Mustapha M, Leibovici M, Verpy E, Goodyear R, Liu XZ, Nouaille S, Nance WE, Kanaan M, Avraham KB, Tekaia F, Loiselet J, Lathrop M, Richardson G, Petit C. Otoancorin, an inner ear protein restricted to the interface between the apical surface of sensory epithelia and their overlying acellular gels, is defective in autosomal recessive deafness DFNB22. Proc Natl Acad Sci U S A. 2002; 99 6240-6245
- 52 Wangemann P. Supporting sensory transduction: cochlear fluid homeostasis and the endocochlear potential. J Physiol. 2006; 576 11-21
- 53 Hibino H, Kurachi Y. Molecular and physiological bases of the K+ circulation in the mammalian inner ear. Physiology (Bethesda). 2006; 21 336-345
- 54 Salt AN. Regulation of endolymphatic fluid volume. Ann N Y Acad Sci. 2001; 942 306-312
- 55 Salt AN. Dynamics of inner ear fluids. In:, Jahn AF,, Santos-Sacchi J,, editors Physiology of the ear. 2nd ed San Diego, CA: Singular Thompson Learning; 2001: 333-355
- 56 Heller S. Application of physiological genomics to the study of hearing disorders. J Physiol. 2002; 543 3-12
- 57 Cusimano F, Martines E, Rizzo C. The Jervell and Lange-Nielsen syndrome. Int J Pediatr Otorhinolaryngol. 1991; 22 49-58
- 58 Coucke PJ, Van Hauwe P, Kelley PM, Kunst H, Schatteman I, Van Velzen D, Meyers J, Ensink RJ, Verstreken M, Declau F, Marres H, Kastury K, Bhasin S, McGuirt WT, Smith RJ, Cremers CW, Van de Heyning P, Willems PJ, Smith SD, Van Camp G. Mutations in the KCNQ4 gene are responsible for autosomal dominant deafness in four DFNA2 families. Hum Mol Genet. 1999; 8 1321-1328
- 59 Kubisch C, Schroeder BC, Friedrich T, Lütjohann B, El-Amraoui A, Marlin S, Petit C, Jentsch TJ. KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness. Cell. 1999; 96 437-446
- 60 Kharkovets T, Hardelin JP, Safieddine S, Schweizer M, El-Amraoui A, Petit C, Jentsch TJ. KCNQ4, a K+ channel mutated in a form of dominant deafness, is expressed in the inner ear and the central auditory pathway. Proc Natl Acad Sci U S A. 2000; 97 4333-4338
- 61 Coucke P, Van Camp G, Djoyodiharjo B, Smith SD, Frants RR, Padberg GW, Darby JK, Huizing EH, Cremers CW, Kimberling WJ. et al . Linkage of autosomal dominant hearing loss to the short arm of chromosome 1 in two families. N Engl J Med. 1994; 331 425-431
- 62 Bom SJ, De Leenheer EM, Lemaire FX, Kemperman MH, Verhagen WI, Marres HA, Kunst HP, Ensink RJ, Bosman AJ, Van Camp G, Cremers FP, Huygen PL, Cremers CW. Speech recognition scores related to age and degree of hearing impairment in DFNA2/KCNQ4 and DFNA9/COCH. Arch Otolaryngol Head Neck Surg. 2001; 127 1045-1048
- 63 Birkenhäger R, Aschendorff A, Schipper J, Laszig R. Non-syndromic hereditary hearing impairment. Laryngorhinootologie. 2007; 86 299-309
- 64 Kikuchi T, Kimura RS, Paul DL, Adams JC. Gap junctions in the rat cochlea: immunohistochemical and ultrastructural analysis. Anat Embryol (Berl). 1995; 191 101-118
- 65 Lautermann J, ten Cate WJ, Altenhoff P, Grümmer R, Traub O, Frank H, Jahnke K, Winterhager E. Expression of the gap-junction connexins 26 and 30 in the rat cochlea. Cell Tissue Res. 1998; 294 415-420
- 66 Kelsell DP, Dunlop J, Stevens HP, Lench NJ, Liang JN, Parry G, Mueller RF, Leigh IM. Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature. 1997; 387 80-83
- 67 Denoyelle F, Weil D, Maw MA, Wilcox SA, Lench NJ, Allen-Powell DR, Osborn AH, Dahl HH, Middleton A, Houseman MJ, Dodé C, Marlin S, Boulila-ElGaied A, Grati M, Ayadi H, BenArab S, Bitoun P, Lina-Granade G, Godet J, Mustapha M, Loiselet J, El-Zir E, Aubois A, Joannard A, Petit C. et al . Prelingual deafness: high prevalence of a 30delG mutation in the connexin 26 gene. Hum Mol Genet. 1997; 6 2173-2177
- 68 Zelante L, Gasparini P, Estivill X, Melchionda S, D’Agruma L, Govea N, Milá M, Monica MD, Lutfi J, Shohat M, Mansfield E, Delgrosso K, Rappaport E, Surrey S, Fortina P. Connexin26 mutations associated with the most common form of non-syndromic neurosensory autosomal recessive deafness (DFNB1) in Mediterraneans. Hum Mol Genet. 1997; 6 1605-1609
- 69 Maw MA, Allen-Powell DR, Goodey RJ, Stewart IA, Nancarrow DJ, Hayward NK, Gardner RJ. The contribution of the DFNB1 locus to neurosensory deafness in a Caucasian population. Am J Hum Genet. 1995; 57 629-635
- 70 Kupka S, Braun S, Aberle S, Haack B, Ebauer M, Zeissler U, Zenner HP, Blin N, Pfister M. Frequencies of GJB2 mutations in German control individuals and patients showing sporadic non-syndromic hearing impairment. Hum Mutat. 2002; 20 77-78
- 71 Snoeckx RL, Huygen PL, Feldmann D, Marlin S, Denoyelle F, Waligora J, Mueller-Malesinska M, Pollak A, Ploski R, Murgia A, Orzan E, Castorina P, Ambrosetti U, Nowakowska-Szyrwinska E, Bal J, Wiszniewski W, Janecke AR, Nekahm-Heis D, Seeman P, Bendova O, Kenna MA, Frangulov A, Rehm HL, Tekin M, Incesulu A, Dahl HH, du Sart D, Jenkins L, Lucas D, Bitner-Glindzicz M, Avraham KB, Brownstein Z, del Castillo I, Moreno F, Blin N, Pfister M, Sziklai I, Toth T, Kelley PM, Cohn ES, Van Maldergem L, Hilbert P, Roux AF, Mondain M, Hoefsloot LH, Cremers CW, Löppönen T, Löppönen H, Parving A, Gronskov K, Schrijver I, Roberson J, Gualandi F, Martini A, Lina-Granade G, Pallares-Ruiz N, Correia C, Fialho G, Cryns K, Hilgert N, Van de Heyning P, Nishimura CJ, Smith RJ, Van Camp G. GJB2 mutations and degree of hearing loss: a multicenter study. Am J Hum Genet. 2005; 77 945-957
- 72 Lerer I, Sagi M, Ben-Neriah Z, Wang T, Levi H, Abeliovich D. A deletion mutation in GJB6 cooperating with a GJB2 mutation in trans in non-syndromic deafness: A novel founder mutation in Ashkenazi Jews. Hum Mutat. 2001; 18 460
- 73 del Castillo I, Villamar M, Moreno-Pelayo MA, del Castillo FJ, Alvarez A, Telleria D, Menendez I, Moreno F. A deletion involving the connexin 30 gene in nonsyndromic hearing impairment. N Engl J Med. 2002; 346 243-249
- 74 Lang F, Vallon V, Knipper M, Wangemann P. Functional significance of channels and transporters expressed in the inner ear and kidney. Am J Physiol Cell Physiol. 2007; 293 C1187-C1208
- 75 Bartter FC, Pronove P, Gill Jr JR, Maccardle RC. Hyperplasia of the juxtaglomerular complex with hyperaldosteronism and hypokalemic alkalosis. A new syndrome. Am J Med. 1962; 33 811-828
- 76 Estevez R, Boettger T, Stein V, Birkenhäger R, Otto E, Hildebrandt F, Jentsch TJ. Barttin is a Cl-channel beta-subunit crucial for renal Cl- reabsorption and inner ear K+ secretion. Nature. 2001; 414 558-561
- 77 Birkenhäger R, Otto E, Schürmann MJ, Vollmer M, Ruf EM, Maier-Lutz I, Beekmann F, Fekete A, Omran H, Feldmann D, Milford DV, Jeck N, Konrad M, Landau D, Knoers NV, Antignac C, Sudbrak R, Kispert A, Hildebrandt F. Mutation of BSND causes Bartter syndrome with sensorineural deafness and kidney failure. Nat Genet. 2001; 29 310-314
- 78 Schlingmann KP, Konrad M, Jeck N, Waldegger P, Reinalter SC, Holder M, Seyberth HW, Waldegger S. Salt wasting and deafness resulting from mutations in two chloride channels. N Engl J Med. 2004; 350 1314-1319
- 79 Takeuchi S, Ando M, Kozakura K, Saito H, Irimajiri A. Ion channels in basolateral membrane of marginal cells dissociated from gerbil stria vascularis. Hear Res. 1995; 83 89-100
- 80 Ando M, Takeuchi S. mRNA encoding ‘ClC-K1, a kidney Cl(-)- channel’ is expressed in marginal cells of the stria vascularis of rat cochlea: its possible contribution to Cl(-) currents. Neurosci Lett. 2000; 284 171-174
- 81 Qu C, Liang F, Hu W, Shen Z, Spicer SS, Schulte BA. Expression of CLC-K chloride channels in the rat cochlea. Hear Res. 2006; 213 79-87
- 82 Assad JA, Shepherd GM, Corey DP. Tip-link integrity and mechanical transduction in vertebrate hair cells. Neuron. 1991; 7 985-994
- 83 Farris HE, LeBlanc CL, Goswami J, Ricci AJ. Probing the pore of the auditory hair cell mechanotransducer channel in turtle. J Physiol. 2004; 558 769-792
- 84 Mammano F, Bortolozzi M, Ortolano S, Anselmi F. Ca2+ signaling in the inner ear. Physiology (Bethesda). 2007; 22 131-144
- 85 Beitz E, Zenner HP, Schultz JE. Aquaporin-mediated fluid regulation in the inner ear. Cell Mol Neurobiol. 2003; 23 315-329
- 86 Hirt B, Penkova ZH, Eckhard A, Liu W, Rask-Andersen H, Müller M, Löwenheim H. The subcellular distribution of aquaporin 5 in the cochlea reveals a water shunt at the perilymph-endolymph barrier. Neuroscience. 2010; 168 957-970
- 87 Takeda T, Sawada S, Takeda S, Kitano H, Suzuki M, Kakigi A, Takeuchi S. The effects of V2 antagonist (OPC-31260) on endolymphatic hydrops. Hear Res. 2003; 182 9-18
- 88 Mhatre AN, Jero J, Chiappini I, Bolasco G, Barbara M, Lalwani AK. Aquaporin-2 expression in the mammalian cochlea and investigation of its role in Meniere's disease. Hear Res. 2002; 170 59-69
- 89 Sawada S, Takeda T, Kitano H, Takeuchi S, Kakigi A, Azuma H. Aquaporin-2 regulation by vasopressin in the rat inner ear. Neuroreport. 2002; 13 1127-1129
- 90 Fukushima M, Kitahara T, Uno Y, Fuse Y, Doi K, Kubo T. Effects of intratympanic injection of steroids on changes in rat inner ear aquaporin expression. Acta Otolaryngol. 2002; 122 600-606
- 91 Al-Mana D, Ceranic B, Djahanbakhch O, Luxon LM. Hormones and the auditory system: a review of physiology and pathophysiology. Neuroscience. 2008; 153 881-900
- 92 Dunnebier EA, Segenhout JM, Wit HP, Albers FW. Two-phase endolymphatic hydrops: a new dynamic guinea pig model. Acta Otolaryngol. 1997; 117 13-19
- 93 Glowatzki E, Fuchs PA. Transmitter release at the hair cell ribbon synapse. Nat Neurosci. 2002; 5 147-154
- 94 Fuchs PA. Time and intensity coding at the hair cell's ribbon synapse. J Physiol. 2005; 566 7-12
- 95 Moser T, Brandt A, Lysakowski A. Hair cell ribbon synapses. Cell Tissue Res. 2006a; 326 347-359
- 96 Moser T, Neef A, Khimich D. Mechanisms underlying the temporal precision of sound coding at the inner hair cell ribbon synapse. J Physiol. 2006b; 576 55-62
- 97 Nouvian R, Beutner D, Parsons TD, Moser T. Structure and function of the hair cell ribbon synapse. J Membr Biol. 2006; 209 153-165
- 98 Brandt A, Striessnig J, Moser T. CaV1.3 channels are essential for development and presynaptic activity of cochlear inner hair cells. J Neurosci. 2003; 23 10832-10840
- 99 Dou H, Vazquez AE, Namkung Y, Chu H, Cardell EL, Nie L, Parson S, Shin HS, Yamoah EN. Null mutation of alpha1D Ca2+ channel gene results in deafness but no vestibular defect in mice. J Assoc Res Otolaryngol. 2004; 5 215-2226
- 100 Platzer J, Engel J, Schrott-Fischer A, Stephan K, Bova S, Chen H, Zheng H, Striessnig J. Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell. 2000; 102 89-97
- 101 Roux I, Safieddine S, Nouvian R, Grati M, Simmler MC, Bahloul A, Perfettini I, Le Gall M, Rostaing P, Hamard G, Triller A, Avan P, Moser T, Petit C. Otoferlin, defective in a human deafness form, is essential for exocytosis at the auditory ribbon synapse. Cell. 2006; 127 277-289
- 102 Schug N, Braig C, Zimmermann U, Engel J, Winter H, Ruth P, Blin N, Pfister M, Kalbacher H, Knipper M. Differential expression of otoferlin in brain, vestibular system, immature and mature cochlea of the rat. Eur J Neurosci. 2006; 24 3372-3380
- 103 Rodriguez-Ballesteros M, Castillo FJ del, Martin Y, Moreno-Pelayo MA, Morera C, Prieto F, Marco J, Morant A, Gallo-Terán J, Morales-Angulo C, Navas C, Trinidad G, Tapia MC, Moreno F, del Castillo I. Auditory neuropathy in patients carrying mutations in the otoferlin gene (OTOF). Hum Mutat. 2003; 22 451-456
- 104 Rouillon I, Marcolla A, Roux I, Marlin S, Feldmann D, Couderc R, Jonard L, Petit C, Denoyelle F, Garabédian EN, Loundon N. Results of cochlear implantation in two children with mutations in the OTOF gene. Int J Pediatr Otorhinolaryngol. 2006; 70 689-696
- 105 Strenzke N, Pauli-Magnus D, Meyer A, Brandt A, Maier H, Moser T. [Update on physiology and pathophysiology of the inner ear: pathomechanisms of sensorineural hearing loss]. HNO. 2008; 56 27-36
- 106 Amatuzzi MG, Northrop C, Liberman MC, Thornton A, Halpin C, Herrmann B, Pinto LE, Saenz A, Carranza A, Eavey RD. Selective inner hair cell loss in premature infants and cochlea pathological patterns from neonatal intensive care unit autopsies. Arch Otolaryngol Head Neck Surg. 2001; 127 629-636
- 107 Ding DL, Wang J, Salvi R, Henderson D, Hu BH, McFadden SL, Mueller M. Selective loss of inner hair cells and type-I ganglion neurons in carboplatin-treated chinchillas. Mechanisms of damage and protection. Ann N Y Acad Sci. 1999; 884 152-170
- 108 Henry WR, Mulroy MJ. Afferent synaptic changes in auditory hair cells during noise-induced temporary threshold shift. Hear Res. 1995; 84 81-90
- 109 Guinan JJ. Physiology of olivocochlear efferents. In: Dallos P, Fay RR, Popper AN (editors). The cochlea. Springer handbook of auditory research New-York: Springer; 1996: 435-502
- 110 Dolan DF, Nuttall AL. Masked cochlear whole-nerve response intensity functions altered by electrical stimulation of the crossed olivocochlear bundle. J Acoust. Soc Am. 1988; 83 1081-1086
- 111 Kawase T, Delgutte B, Liberman MC. Antimasking effects of the olivocochlear reflex. II. Enhancement of auditory-nerve response to masked tones. J Neurophysiol. 1993; 70 2533-2549
- 112 Darrow KN, Maison SF, Liberman MC. Cochlear efferent feedback balances interaural sensitivity. Nat Neurosci. 2006; 9 1474-1476
- 113 Geisler CD. Letter: Hypothesis on the function of the crossed olivocochlear bundle. J Acoust Soc Am. 1974; 56 1908-1909
- 114 Mountain DC. Changes in endolymphatic potential and crossed olivocochlear bundle stimulation alter cochlear mechanics. Science. 1980; 210 71-72
- 115 Siegel JH, Kim DO. Efferent neural control of cochlear mechanics? Olivocochlear bundle stimulation affects cochlear biomechanical nonlinearity. Hear Res. 1982; 6 171-182
- 116 Rajan R. Electrical stimulation of the inferior colliculus at low rates protects the cochlea from auditory desensitization. Brain Res. 1990; 506 192-204
- 117 Xie DH, Henson Jr OW. Tonic efferent-induced cochlear damping in roosting and echolocating mustached bats. Hear Res. 1998; 124 60-68
- 118 Maison SF, Luebke AE, Liberman MC, Zuo J. Efferent protection from acoustic injury is mediated via alpha9 nicotinic acetylcholine receptors on outer hair cells. J Neurosci. 2002; 22 10838-10846
- 119 Rusznák Z, Szucs G. Spiral ganglion neurones: an overview of morphology, firing behaviour, ionic channels and function. Pflugers Arch. 2009; 457 1303-1325
- 120 Fuchs PA, Glowatzki E, Moser T. The afferent synapse of cochlear hair cells. Curr Opin Neurobiol. 2003; 13 452-458
Korrespondenzadresse
Prof. Dr. med. Timo Stöver
Klinik für Hals-, Nasen-, und
Ohrenheilkunde
Kopf- und Halschirurgie
Klinikum der Johann Wolfgang
Goethe-Universität
Theodor-Stern-Kai 7
60590 Frankfurt am Main
Email: timo.stoever@kgu.de