RSS-Feed abonnieren
DOI: 10.1055/s-0031-1273425
© Georg Thieme Verlag KG Stuttgart · New York
Cell Volume, the Serum and Glucocorticoid Inducible Kinase 1 and the Liver
Zellvolumen, die serum- und glukokortikoidinduzierte Kinase und die LeberPublikationsverlauf
manuscript received: 3.3.2011
manuscript accepted: 11.5.2011
Publikationsdatum:
01. Juni 2011 (online)

Zusammenfassung
Zellschwellung wird durch Freisetzung von Ionen (K+-Kanal und/oder Anionen-Kanal-Aktivierung, KCl-Kotransport, gleichzeitige Aktivierung von K+/H+-Austauscher und Cl–/HCO3 –-Austauscher) kompensiert, während Zellschrumpfung durch regulatorische Ionenaufnahme ausgeglichen wird (Aktivierung von Na+, K+, 2Cl–-Kotransport, Na+/H+-Austausch bei gleichzeitigem Cl–/HCO3 –-Austausch und Na+-Kanälen). Zusätzlich werden durch Zellschrumpfung organische Osmolyte akkumuliert (z. B.: Myoinositol, Betain, Phosphorylcholin, Taurin). Das Zellvolumen kann den Stoffwechsel stark beeinflussen. Zellschrumpfung aktiviert, Zellschwellung inhibiert die Proteolyse und Glykogenolyse. Außerdem beeinflusst das Zellvolumen die Bildung von Oxidanzien. Des Weiteren spielen diese regulatorischen Mechanismen bei Fibrosierung einzelner Organe eine zentrale Rolle. Ein Signalelement der Zellvolumenregulation ist die Serum- und Glukokortikoidinduzierte Kinase 1 (SGK1), die in der Leber exprimiert und bei Zellschrumpfung hochreguliert wird. Sie stimuliert eine Vielzahl von Ionenkanälen und Transportern, wie bspw. den Na+, K+, 2Cl–-Kotransporter und Na+/H+-Austauscher, und kann zur Fibrosierung beitragen. Zusammenfassend nimmt die SGK1 eine bedeutsame Rolle bei der Leberzellvolumenregulation und konsekutiv dem Leberstoffwechsel ein.
Abstract
In virtually all cells including hepatocytes cell volume regulation is accomplished during cell swelling by cellular ion release (activation of K+ channels and/or anion channels, KCl-cotransport, parallel activation of K+/H+ exchange and Cl–/HCO3 – exchange) and following cell shrinkage by cellular ion uptake (activation of Na+, K+, 2Cl– cotransport, Na+/H+ exchange in parallel to Cl–/HCO3 – exchange and Na+-channels). Moreover, cell shrinkage triggers the cellular accumulation of organic osmolytes (e. g., myoinositol, betaine, phosphorylcholine, taurine). Cell volume is a powerful regulator of hepatic metabolism. Cell shrinkage stimulates and cell swelling inhibits proteolysis and glycogenolysis. Moreover, cell volume influences the generation of and sensitivity to oxidants. Cell volume regulatory mechanisms furthermore do play a role in fibrosing disease. Kinases stimulating cell volume regulatory mechanisms include the serum and glucocorticoid inducible kinase SGK1, which is expressed in the liver, is genomically up-regulated by cell shrinkage, stimulates a wide variety of channels and transporters including Na+, K+, 2Cl– cotransport and Na+/H+ exchange and is known to participate in the stimulation of fibrosis. Accordingly, excessive SGK1 expression is observed in liver cirrhosis. The case is made that SGK1 participates in the regulation of liver cell volume and thus in the regulation of hepatic metabolism.
Schlüsselwörter
Leber - Zellvolumen - Stoffwechsel
Key words
liver - cell volume - metabolism
References
- 1
Lang F, Busch G L, Ritter M et al.
Functional significance of cell volume regulatory mechanisms.
Physiol Rev.
1998;
78
247-306
Reference Ris Wihthout Link
- 2
King L S, Kozono D, Agre P.
From structure to disease: the evolving tale of aquaporin biology.
Nat Rev Mol Cell Biol.
2004;
5
687-698
Reference Ris Wihthout Link
- 3
Haussinger D.
Osmosensing and osmosignaling in the liver.
Wien Med Wochenschr.
2008;
158
549-552
Reference Ris Wihthout Link
- 4
Hoffmann E K, Lambert I H, Pedersen S F.
Physiology of cell volume regulation in vertebrates.
Physiol Rev.
2009;
89
193-277
Reference Ris Wihthout Link
- 5
Lang F, Foller M, Lang K et al.
Cell volume regulatory ion channels in cell proliferation and cell death.
Methods Enzymol.
2007;
428
209-225
Reference Ris Wihthout Link
- 6
Pasantes-Morales H, Cruz-Rangel S.
Brain volume regulation: osmolytes and aquaporin perspectives.
Neuroscience.
2010;
168
871-884
Reference Ris Wihthout Link
- 7
Usher-Smith J A, Huang C L, Fraser J A.
Control of cell volume in skeletal muscle.
Biol Rev Camb Philos Soc.
2009;
84
143-159
Reference Ris Wihthout Link
- 8
Burg M B, Ferraris J D, Dmitrieva N I.
Cellular response to hyperosmotic stresses.
Physiol Rev.
2007;
87
1441-1474
Reference Ris Wihthout Link
- 9
Beck F X, Neuhofer W.
Cell volume regulation in the renal papilla.
Contrib Nephrol.
2006;
152
181-197
Reference Ris Wihthout Link
- 10
Haussinger D, Lang F.
Cell volume in the regulation of hepatic function: a mechanism for metabolic control.
Biochim Biophys Acta.
1991;
1071
331-350
Reference Ris Wihthout Link
- 11
Lang F, Stehle T, Haussinger D.
Water, K + , H + , lactate and glucose fluxes during cell volume regulation in perfused
rat liver.
Pflugers Arch.
1989;
413
209-216
Reference Ris Wihthout Link
- 12
Wehner F.
Cell volume-regulated cation channels.
Contrib Nephrol.
2006;
152
25-53
Reference Ris Wihthout Link
- 13
Graf J, Haussinger D.
Ion transport in hepatocytes: mechanisms and correlations to cell volume, hormone
actions and metabolism.
J Hepatol.
1996;
24 (Suppl 1)
53-77
Reference Ris Wihthout Link
- 14
Okada Y.
Cell volume-sensitive chloride channels: phenotypic properties and molecular identity.
Contrib Nephrol.
2006;
152
9-24
Reference Ris Wihthout Link
- 15
Boini K M, Graf D, Hennige A M et al.
Enhanced insulin sensitivity of gene-targeted mice lacking functional KCNQ1.
Am J Physiol Regul Integr Comp Physiol.
2009;
296
R1695-R1701
Reference Ris Wihthout Link
- 16
Jakab M, Grundbichler M, Benicky J et al.
Glucose induces anion conductance and cytosol-to-membrane transposition of ICln in
INS-1E rat insulinoma cells.
Cell Physiol Biochem.
2006;
18
21-34
Reference Ris Wihthout Link
- 17
Wettstein M, Peters-Regehr T, Kubitz R et al.
Release of osmolytes induced by phagocytosis and hormones in rat liver.
Am J Physiol Gastrointest Liver Physiol.
2000;
278
G227-G233
Reference Ris Wihthout Link
- 18
Wehner F, Olsen H, Tinel H et al.
Cell volume regulation: osmolytes, osmolyte transport, and signal transduction.
Rev Physiol Biochem Pharmacol.
2003;
148
1-80
Reference Ris Wihthout Link
- 19
Dahl vom S, Haussinger D.
Cell hydration and proteolysis control in liver.
Biochem J.
1995;
312 (Pt 3)
988-989
Reference Ris Wihthout Link
- 20
Dahl vom S, Haussinger D.
Nutritional state and the swelling-induced inhibition of proteolysis in perfused rat
liver.
J Nutr.
1996;
126
395-402
Reference Ris Wihthout Link
- 21
Dahl vom S, Dombrowski F, Schmitt M et al.
Cell hydration controls autophagosome formation in rat liver in a microtubule-dependent
way downstream from p38 MAPK activation.
Biochem J.
2001;
354
31-36
Reference Ris Wihthout Link
- 22
Stoll B, Gerok W, Lang F et al.
Liver cell volume and protein synthesis.
Biochem J.
1992;
287 (Pt 1)
217-222
Reference Ris Wihthout Link
- 23
Waldegger S, Busch G L, Kaba N K et al.
Effect of cellular hydration on protein metabolism.
Miner Electrolyte Metab.
1997;
23
201-205
Reference Ris Wihthout Link
- 24
Haussinger D, Gorg B.
Interaction of oxidative stress, astrocyte swelling and cerebral ammonia toxicity.
Curr Opin Clin Nutr Metab Care.
2010;
13
87-92
Reference Ris Wihthout Link
- 25
Haussinger D, Lang F.
Cell volume and hormone action.
Trends Pharmacol Sci.
1992;
13
371-373
Reference Ris Wihthout Link
- 26
Lang F, Ritter M, Volkl H et al.
The biological significance of cell volume.
Ren Physiol Biochem.
1993;
16
48-65
Reference Ris Wihthout Link
- 27
Hallbrucker C, Dahl vom S, Lang F et al.
Modification of liver cell volume by insulin and glucagon.
Pflugers Arch.
1991;
418
519-521
Reference Ris Wihthout Link
- 28
Schliess F, Haussinger D.
Cell hydration and insulin signalling.
Cell Physiol Biochem.
2000;
10
403-408
Reference Ris Wihthout Link
- 29
Dahl vom S, Hallbrucker C, Lang F et al.
Regulation of liver cell volume and proteolysis by glucagon and insulin.
Biochem J.
1991;
278 (Pt 3)
771-777
Reference Ris Wihthout Link
- 30
Dahl vom S, Hallbrucker C, Lang F et al.
Regulation of cell volume in the perfused rat liver by hormones.
Biochem J.
1991;
280 (Pt 1)
105-109
Reference Ris Wihthout Link
- 31
Dahl vom S, Haussinger D.
Bumetanide-sensitive cell swelling mediates the inhibitory effect of ethanol on proteolysis
in rat liver.
Gastroenterology.
1998;
114
1046-1053
Reference Ris Wihthout Link
- 32
Fisher S K, Heacock A M, Keep R F et al.
Receptor regulation of osmolyte homeostasis in neural cells.
J Physiol.
2010;
588
3355-3364
Reference Ris Wihthout Link
- 33
Haussinger D, Hallbrucker C, Saha N et al.
Cell volume and bile acid excretion.
Biochem J.
1992;
288 (Pt 2)
681-689
Reference Ris Wihthout Link
- 34
Hallbrucker C, Ritter M, Lang F et al.
Hydroperoxide metabolism in rat liver. K + channel activation, cell volume changes
and eicosanoid formation.
Eur J Biochem.
1993;
211
449-458
Reference Ris Wihthout Link
- 35
Heins J, Zwingmann C.
Organic osmolytes in hyponatremia and ammonia toxicity.
Metab Brain Dis.
2010;
25
81-89
Reference Ris Wihthout Link
- 36
Lang F, Bohmer C, Palmada M et al.
(Patho)physiological significance of the serum- and glucocorticoid-inducible kinase
isoforms.
Physiol Rev.
2006;
86
1151-1178
Reference Ris Wihthout Link
- 37
Feng Y, Wang Q, Wang Y et al.
SGK1-mediated fibronectin formation in diabetic nephropathy.
Cell Physiol Biochem.
2005;
16
237-244
Reference Ris Wihthout Link
- 38
Haussinger D, Reinehr R, Schliess F.
The hepatocyte integrin system and cell volume sensing.
Acta Physiol (Oxf).
2006;
187
249-255
Reference Ris Wihthout Link
- 39
Schliess F, Reissmann R, Reinehr R et al.
Involvement of integrins and Src in insulin signaling toward autophagic proteolysis
in rat liver.
J Biol Chem.
2004;
279
21 294-21 301
Reference Ris Wihthout Link
- 40
Schliess F, Haussinger D.
Osmosensing and signaling in the regulation of liver function.
Contrib Nephrol.
2006;
152
198-209
Reference Ris Wihthout Link
- 41
Schliess F, Haussinger D.
Osmosensing by integrins in rat liver.
Methods Enzymol.
2007;
428
129-144
Reference Ris Wihthout Link
- 42
Theodoropoulos P A, Stournaras C, Stoll B et al.
Hepatocyte swelling leads to rapid decrease of the G-/total actin ratio and increases
actin mRNA levels.
FEBS Lett.
1992;
311
241-245
Reference Ris Wihthout Link
- 43
Tamma G, Procino G, Strafino A et al.
Hypotonicity induces aquaporin-2 internalization and cytosol-to-membrane translocation
of ICln in renal cells.
Endocrinology.
2007;
148
1118-1130
Reference Ris Wihthout Link
- 44
Dahl vom S, Stoll B, Gerok W et al.
Inhibition of proteolysis by cell swelling in the liver requires intact microtubular
structures.
Biochem J.
1995;
308 (Pt 2)
529-536
Reference Ris Wihthout Link
- 45
Schliess F, Schreiber R, Haussinger D.
Activation of extracellular signal-regulated kinases Erk-1 and Erk-2 by cell swelling
in H 4IIE hepatoma cells.
Biochem J.
1995;
309 (Pt 1)
13-17
Reference Ris Wihthout Link
- 46
Delpire E, Austin T M.
Kinase regulation of Na-K-2Cl cotransport in primary afferent neurones.
J Physiol.
2010;
588
3365-3373
Reference Ris Wihthout Link
- 47
Zagorska A, Pozo-Guisado E, Boudeau J et al.
Regulation of activity and localization of the WNK1 protein kinase by hyperosmotic
stress.
J Cell Biol.
2007;
176
89-100
Reference Ris Wihthout Link
- 48
Delpire E, Gagnon K B.
SPAK and OSR1: STE20 kinases involved in the regulation of ion homoeostasis and volume
control in mammalian cells.
Biochem J.
2008;
409
321-331
Reference Ris Wihthout Link
- 49
Peng J B, Warnock D G.
WNK4-mediated regulation of renal ion transport proteins.
Am J Physiol Renal Physiol.
2007;
293
F961-F973
Reference Ris Wihthout Link
- 50
Haussinger D, Schliess F, Dombrowski F et al.
Involvement of p38 MAPK in the regulation of proteolysis by liver cell hydration.
Gastroenterology.
1999;
116
921-935
Reference Ris Wihthout Link
- 51
Schliess F, Richter L, Dahl vom S et al.
Cell hydration and mTOR-dependent signalling.
Acta Physiol (Oxf).
2006;
187
223-229
Reference Ris Wihthout Link
- 52
Lang P A, Kasinathan R S, Brand V B et al.
Accelerated clearance of Plasmodium-infected erythrocytes in sickle cell trait and
annexin-A7 deficiency.
Cell Physiol Biochem.
2009;
24
415-428
Reference Ris Wihthout Link
- 53
Kucherenko Y, Browning J, Tattersall A et al.
Effect of peroxynitrite on passive K + transport in human red blood cells.
Cell Physiol Biochem.
2005;
15
271-280
Reference Ris Wihthout Link
- 54
Janmey P A, Lindberg U.
Cytoskeletal regulation: rich in lipids.
Nat Rev Mol Cell Biol.
2004;
5
658-666
Reference Ris Wihthout Link
- 55
Gamper N, Shapiro M S.
Target-specific PIP(2) signalling: how might it work?.
J Physiol.
2007;
582
967-975
Reference Ris Wihthout Link
- 56
Ferraris J D, Burg M B.
Tonicity-dependent regulation of osmoprotective genes in Mammalian cells.
Contrib Nephrol.
2006;
152
125-141
Reference Ris Wihthout Link
- 57
Lang F, Strutz-Seebohm N, Seebohm G et al.
Significance of SGK1 in the regulation of neuronal function.
J Physiol.
2010;
588
3349-3354
Reference Ris Wihthout Link
- 58
Rusai K, Wagner B, Roos M et al.
The serum and glucocorticoid-regulated kinase 1 in hypoxic renal injury.
Cell Physiol Biochem.
2009;
24
577-584
Reference Ris Wihthout Link
- 59
Wang K, Gu S, Nasir O et al.
SGK1-dependent intestinal tumor growth in APC-deficient mice.
Cell Physiol Biochem.
2010;
25
271-278
Reference Ris Wihthout Link
- 60
Lang F, Artunc F, Vallon V.
The physiological impact of the serum and glucocorticoid-inducible kinase SGK1.
Curr Opin Nephrol Hypertens.
2009;
18
439-448
Reference Ris Wihthout Link
- 61
Rotte A, Mack A F, Bhandaru M et al.
Pioglitazone induced gastric acid secretion.
Cell Physiol Biochem.
2009;
24
193-200
Reference Ris Wihthout Link
- 62
Rotte A, Bhandaru M, Foller M et al.
APC sensitive gastric acid secretion.
Cell Physiol Biochem.
2009;
23
133-142
Reference Ris Wihthout Link
- 63
Sobiesiak M, Shumilina E, Lam R S et al.
Impaired mast cell activation in gene-targeted mice lacking the serum- and glucocorticoid-inducible
kinase SGK1.
J Immunol.
2009;
183
4395-4402
Reference Ris Wihthout Link
- 64
Schliess F, Haussinger D.
Cell volume and insulin signaling.
Int Rev Cytol.
2003;
225
187-228
Reference Ris Wihthout Link
- 65
Diakov A, Nesterov V, Mokrushina M et al.
Protein kinase B alpha (PKBalpha) stimulates the epithelial sodium channel (ENaC)
heterologously expressed in Xenopus laevis oocytes by two distinct mechanisms.
Cell Physiol Biochem.
2010;
26
913-924
Reference Ris Wihthout Link
- 66
Krueger B, Haerteis S, Yang L et al.
Cholesterol depletion of the plasma membrane prevents activation of the epithelial
sodium channel (ENaC) by SGK1.
Cell Physiol Biochem.
2009;
24
605-618
Reference Ris Wihthout Link
- 67
Menniti M, Iuliano R, Foller M et al.
60kDa lysophospholipase, a new Sgk1 molecular partner involved in the regulation of
ENaC.
Cell Physiol Biochem.
2010;
26
587-596
Reference Ris Wihthout Link
- 68
Reisenauer M R, Wang S W, Xia Y et al.
Dot1a contains three nuclear localization signals and regulates the epithelial Na
+ channel (ENaC) at multiple levels.
Am J Physiol Renal Physiol.
2010;
299
F63-F76
Reference Ris Wihthout Link
- 69
Shumilina E, Zemtsova I M, Heise N et al.
Phosphoinositide-dependent kinase PDK1 in the regulation of Ca2 + entry into mast
cells.
Cell Physiol Biochem.
2010;
26
699-706
Reference Ris Wihthout Link
- 70
Bohmer C, Palmada M, Kenngott C et al.
Regulation of the epithelial calcium channel TRPV6 by the serum and glucocorticoid-inducible
kinase isoforms SGK1 and SGK3.
FEBS Lett.
2007;
581
5586-5590
Reference Ris Wihthout Link
- 71
Bergler T, Stoelcker B, Jeblick R et al.
High osmolality induces the kidney-specific chloride channel CLC-K1 by a serum and
glucocorticoid-inducible kinase 1 MAPK pathway.
Kidney Int.
2008;
74
1170-1177
Reference Ris Wihthout Link
- 72
Sato J D, Chapline M C, Thibodeau R et al.
Regulation of human cystic fibrosis transmembrane conductance regulator (CFTR) by
serum- and glucocorticoid-inducible kinase (SGK1).
Cell Physiol Biochem.
2007;
20
91-98
Reference Ris Wihthout Link
- 73
Shaw J R, Sato J D, VanderHeide J et al.
The role of SGK and CFTR in acute adaptation to seawater in Fundulus heteroclitus.
Cell Physiol Biochem.
2008;
22
69-78
Reference Ris Wihthout Link
- 74
Seebohm G, Strutz-Seebohm N, Ureche O N et al.
Long QT syndrome-associated mutations in KCNQ1 and KCNE1 subunits disrupt normal endosomal
recycling of IKs channels.
Circ Res.
2008;
103
1451-1457
Reference Ris Wihthout Link
- 75
Seebohm G, Strutz-Seebohm N, Baltaev R et al.
Regulation of KCNQ4 potassium channel prepulse dependence and current amplitude by
SGK1 in Xenopus oocytes.
Cell Physiol Biochem.
2005;
16
255-262
Reference Ris Wihthout Link
- 76
Shumilina E, Lampert A, Lupescu A et al.
Deranged Kv channel regulation in fibroblasts from mice lacking the serum and glucocorticoid
inducible kinase SGK1.
J Cell Physiol.
2005;
204
87-98
Reference Ris Wihthout Link
- 77
Boehmer C, Laufer J, Jeyaraj S et al.
Modulation of the voltage-gated potassium channel Kv1.5 by the SGK1 protein kinase
involves inhibition of channel ubiquitination.
Cell Physiol Biochem.
2008;
22
591-600
Reference Ris Wihthout Link
- 78
Laufer J, Boehmer C, Jeyaraj S et al.
The C-terminal PDZ-binding motif in the Kv1.5 potassium channel governs its modulation
by the Na +/H + exchanger regulatory factor 2.
Cell Physiol Biochem.
2009;
23
25-36
Reference Ris Wihthout Link
- 79
Ullrich S, Berchtold S, Ranta F et al.
Serum- and glucocorticoid-inducible kinase 1 (SGK1) mediates glucocorticoid-induced
inhibition of insulin secretion.
Diabetes.
2005;
54
1090-1099
Reference Ris Wihthout Link
- 80
Baltaev R, Strutz-Seebohm N, Korniychuk G et al.
Regulation of cardiac shal-related potassium channel Kv 4.3 by serum- and glucocorticoid-inducible
kinase isoforms in Xenopus oocytes.
Pflugers Arch.
2005;
450
26-33
Reference Ris Wihthout Link
- 81
Arteaga M F, Coric T, Straub C et al.
A brain-specific SGK1 splice isoform regulates expression of ASIC1 in neurons.
Proc Natl Acad Sci USA.
2008;
105
4459-4464
Reference Ris Wihthout Link
- 82
Strutz-Seebohm N, Seebohm G, Shumilina E et al.
Glucocorticoid adrenal steroids and glucocorticoid-inducible kinase isoforms in the
regulation of GluR6 expression.
J Physiol.
2005;
565
391-401
Reference Ris Wihthout Link
- 83
Fejes-Toth G, Frindt G, Naray-Fejes-Toth A et al.
Epithelial Na + channel activation and processing in mice lacking SGK1.
Am J Physiol Renal Physiol.
2008;
294
F1298-F1305
Reference Ris Wihthout Link
- 84
Fuster D G, Bobulescu I A, Zhang J et al.
Characterization of the regulation of renal Na + /H + exchanger NHE3 by insulin.
Am J Physiol Renal Physiol.
2007;
292
F577-F585
Reference Ris Wihthout Link
- 85
Wang D, Zhang H, Lang F et al.
Acute activation of NHE3 by dexamethasone correlates with activation of SGK1 and requires
a functional glucocorticoid receptor.
Am J Physiol Cell Physiol.
2007;
292
C396-C404
Reference Ris Wihthout Link
- 86
Yun C C, Chen Y, Lang F.
Glucocorticoid activation of Na(+ )/H(+ ) exchanger isoform 3 revisited. The roles
of SGK1 and NHERF2.
J Biol Chem.
2002;
277
7676-7683
Reference Ris Wihthout Link
- 87
Grahammer F, Artunc F, Sandulache D et al.
Renal function of gene-targeted mice lacking both SGK1 and SGK3.
Am J Physiol Regul Integr Comp Physiol.
2006;
290
R945-R950
Reference Ris Wihthout Link
- 88
Shojaiefard M, Strutz-Seebohm N, Tavare J M et al.
Regulation of the Na(+ ), glucose cotransporter by PIKfyve and the serum and glucocorticoid
inducible kinase SGK1.
Biochem Biophys Res Commun.
2007;
359
843-847
Reference Ris Wihthout Link
- 89
Palmada M, Boehmer C, Akel A et al.
SGK1 kinase upregulates GLUT1 activity and plasma membrane expression.
Diabetes.
2006;
55
421-427
Reference Ris Wihthout Link
- 90
Jeyaraj S, Boehmer C, Lang F et al.
Role of SGK1 kinase in regulating glucose transport via glucose transporter GLUT4.
Biochem Biophys Res Commun.
2007;
356
629-635
Reference Ris Wihthout Link
- 91
Bohmer C, Sopjani M, Klaus F et al.
The serum and glucocorticoid inducible kinases SGK1 – 3 stimulate the neutral amino
acid transporter SLC6A19.
Cell Physiol Biochem.
2010;
25
723-732
Reference Ris Wihthout Link
- 92
Boehmer C, Palmada M, Rajamanickam J et al.
Post-translational regulation of EAAT2 function by co-expressed ubiquitin ligase Nedd
4-2 is impacted by SGK kinases.
J Neurochem.
2006;
97
911-921
Reference Ris Wihthout Link
- 93
Gehring E M, Zurn A, Klaus F et al.
Regulation of the glutamate transporter EAAT2 by PIKfyve.
Cell Physiol Biochem.
2009;
24
361-368
Reference Ris Wihthout Link
- 94
Alesutan I S, Ureche O N, Laufer J et al.
Regulation of the glutamate transporter EAAT4 by PIKfyve.
Cell Physiol Biochem.
2010;
25
187-194
Reference Ris Wihthout Link
- 95
Rajamanickam J, Palmada M, Lang F et al.
EAAT4 phosphorylation at the SGK1 consensus site is required for transport modulation
by the kinase.
J Neurochem.
2007;
102
858-866
Reference Ris Wihthout Link
- 96
Boehmer C, Rajamanickam J, Schniepp R et al.
Regulation of the excitatory amino acid transporter EAAT5 by the serum and glucocorticoid
dependent kinases SGK1 and SGK3.
Biochem Biophys Res Commun.
2005;
329
738-742
Reference Ris Wihthout Link
- 97
Boehmer C, Palmada M, Klaus F et al.
The peptide transporter PEPT2 is targeted by the protein kinase SGK1 and the scaffold
protein NHERF2.
Cell Physiol Biochem.
2008;
22
705-714
Reference Ris Wihthout Link
- 98
Rexhepaj R, Rotte A, Pasham V et al.
PI3 kinase and PDK1 in the regulation of the electrogenic intestinal dipeptide transport.
Cell Physiol Biochem.
2010;
25
715-722
Reference Ris Wihthout Link
- 99
Shojaiefard M, Christie D L, Lang F.
Stimulation of the creatine transporter SLC6A8 by the protein kinases SGK1 and SGK3.
Biochem Biophys Res Commun.
2005;
334
742-746
Reference Ris Wihthout Link
- 100
Shojaiefard M, Christie D L, Lang F.
Stimulation of the creatine transporter SLC6A8 by the protein kinase mTOR.
Biochem Biophys Res Commun.
2006;
341
945-949
Reference Ris Wihthout Link
- 101
Klaus F, Palmada M, Lindner R et al.
Up-regulation of hypertonicity-activated myo-inositol transporter SMIT1 by the cell
volume-sensitive protein kinase SGK1.
J Physiol.
2008;
586
1539-1547
Reference Ris Wihthout Link
- 102
Palmada M, Dieter M, Speil A et al.
Regulation of intestinal phosphate cotransporter NaPi IIb by ubiquitin ligase Nedd4
– 2 and by serum- and glucocorticoid-dependent kinase 1.
Am J Physiol Gastrointest Liver Physiol.
2004;
287
G143-G150
Reference Ris Wihthout Link
- 103
Shojaiefard M, Lang F.
Stimulation of the intestinal phosphate transporter SLC34A2 by the protein kinase
mTOR.
Biochem Biophys Res Commun.
2006;
345
1611-1614
Reference Ris Wihthout Link
- 104
Ullrich S, Zhang Y, Avram D et al.
Dexamethasone increases Na + /K + ATPase activity in insulin secreting cells through
SGK1.
Biochem Biophys Res Commun.
2007;
352
662-667
Reference Ris Wihthout Link
PD Dr. Dirk Graf
Clinic for Gastroenterology, Hepatology and Infectiology, University Düsseldorf
Moorenstraße 5
40225 Düsseldorf
Telefon: ++ 49/2 11/8 11 78 49
eMail: DirkGraf@gmx.net