Int J Sports Med 2011; 32(9): 693-697
DOI: 10.1055/s-0031-1275358
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

V˙O2 Slow Component is Independent from Critical Power

L. Bosquet1 , 2 , M. Larrouturou3 , O. Lheureux3 , H. Carter4
  • 1Faculty of Sport Sciences (EA3813), University of Poitiers, France
  • 2Department of Kinesiology, University of Montreal, Canada
  • 3Faculty of Sport Sciences, University of Pau, France
  • 4Faculty of Sport Sciences, University of Brighton, United Kingdom
Weitere Informationen


accepted after revision March 01, 2011

12. Mai 2011 (online)


The aim of this study was to determine whether the amplitude of the V˙O2 slow component was dependent from Critical Power (CP; the slope of the linear time – distance relationship) in individuals matched for V˙O2 peak. 30 moderately-trained endurance athletes completed a maximal graded exercise test, 2 randomly ordered constant power tests at 90 and 100% of peak power output (PPO), and 2 constant duration test of 6 min at 30% of the difference between CP and PPO. Afterwards, participants were ranked according to their relative CP (%PPO; a direct measure of aerobic endurance). The median third was excluded to form a low aerobic endurance group (LEG) and a high aerobic endurance group (HEG). A t-test revealed no difference between LEG and HEG in peak oxygen consumption, but a large difference in their relative CP (p<0.001, effect size=3.2). A′2 was similar between groups (626±96 and 512±176 ml, corresponding to 26±4 and 24±8% of end exercise oxygen consumption, respectively; NS) and was not associated with relative CP (r=0.10; NS). These results suggest that increasing CP probably extends the range of exercise intensities over which the V˙O2 slow component does not develop, but does not decrease the amplitude of this phenomenon once it occurs.


  • 1 Barstow TJ, Jones AM, Nguyen PH, Casaburi R. Influence of muscle fiber type and pedal frequency on oxygen uptake kinetics of heavy exercise.  J Appl Physiol. 1996;  81 1642-1650
  • 2 Bell C, Paterson DH, Babcock MA, Cunningham DA. Characteristics of the V˙O2 slow component during heavy exercise in humans aged 30 to 80 years.  Adv Exp Med Biol. 1998;  450 219-222
  • 3 Billat VL, Koralstein JP. Significance of the velocity at V˙O2max and time to exhaustion at this velocity.  Sports Med. 1996;  22 90-108
  • 4 Bosquet L, Duchene A, Lecot F, Dupont G, Leger L. Vmax estimate from three-parameter critical velocity models: validity and impact on 800 m running performance prediction.  Eur J Appl Physiol. 2006;  97 34-42
  • 5 Bosquet L, Leger L, Legros P. Methods to determine aerobic endurance.  Sports Med. 2002;  32 675-700
  • 6 Burnley M, Jones A. Oxygen uptake kinetics as a determinant of sports performance.  Eur J Sport Sci. 2007;  7 63-79
  • 7 Cappon JP, Ipp E, Brasel JA, Cooper DM. Acute effects of high fat and high glucose meals on the growth hormone response to exercise.  J Clin Endocrinol Metab. 1993;  76 1418-1422
  • 8 Carter H, Jones AM, Barstow TJ, Burnley M, Williams CA, Doust JH. Oxygen uptake kinetics in treadmill running and cycle ergometry: a comparison.  J Appl Physiol. 2000;  89 899-907
  • 9 Cohen J. Statistical Power Analysis for the Behavioral Sciences.. Hillsdale (NJ): Lawrence Erlbaum Associates; 1988: 1-587
  • 10 Coyle EF, Coggan AR, Hopper MK, Walters TJ. Determinants of endurance in well-trained cyclists.  J Appl Physiol. 1988;  64 2622-2630
  • 11 Di Prampero PE, Atchou G, Bruckner JC, Moia C. The energetics of endurance running.  Eur J Appl Physiol. 1986;  55 259-266
  • 12 Foster C, Costill DL, Daniels JT, Fink WJ. Skeletal muscle enzyme activity, fiber composition and V˙O2 max in relation to distance running performance.  Eur J Appl Physiol. 1978;  39 73-80
  • 13 Gaesser GA, Carnevale TJ, Garfinkel A, Walter DO, Womack CJ. Estimation of critical power with non linear and linear models.  Med Sci Sports Exerc. 1995;  27 1430-1438
  • 14 Gastin PB. Energy system interaction and relative contribution during maximal exercise.  Sports Med. 2001;  31 725-741
  • 15 Harriss DJ, Atkinson G. International Journal of Sports Medicine – Ethical Standards in Sport and Exercise Science Research.  Int J Sports Med. 2009;  30 701-702
  • 16 Housh DJ, Housh TJ, Bauge SM. A methodological consideration for the determination of critical power and anaerobic work capacity.  Res Q Exerc Sport. 1990;  61 406-409
  • 17 Jones AM, Carter H. The effect of endurance training on parameters of aerobic fitness.  Sports Med. 2000;  29 373-386
  • 18 Koga S, Poole DC, Shiojiri T, Kondo N, Fukuba Y, Miura A, Barstow TJ. Comparison of oxygen uptake kinetics during knee extension and cycle exercise.  Am J Physiol. 2005;  288 R212-R220
  • 19 Lacour JR, Flandrois R. Role of aerobic metabolism in prolonged intensive exercise.  J Physiol (Paris). 1977;  73 89-130
  • 20 Monod H, Scherrer J. The work capacity of a synergic muscular group.  Ergonomics. 1965;  8 329-337
  • 21 Morgan DW, Baldini FD, Martin PE, Kohrt WM. Ten kilometer performance and predicted velocity at V˙O2 max among well-trained male runners.  Med Sci Sports Exerc. 1989;  21 78-83
  • 22 Neder JA, Jones PW, Nery LE, Whipp BJ. The effect of age on the power/duration relationship and the intensity domain limits in sedentary men.  Eur J Appl Physiol. 2000;  82 326-332
  • 23 Peronnet F, Massicotte D. Table of nonprotein respiratory quotient: an update.  Can J Appl Physiol. 1991;  16 23-29
  • 24 Peronnet F, Thibault G. Mathematical analysis of running performance and world running records.  J Appl Physiol. 1989;  67 453-465
  • 25 Peronnet F, Thibault G, Ledoux M. Performance in endurance events: energy balance, nutrition and temperature regulation.. London, Canada: Spodym; 1987
  • 26 Poole DC, Barstow TJ, Gaesser GA, Willis WT, Whipp BJ. VO2 slow component: physiological and functional significance.  Med Sci Sports Exerc. 1994;  26 1354-1358
  • 27 Poole DC, Schaffartzik W, Knight DR, Derion T, Kennedy B, Guy HJ, Prediletto R, Wagner PD. Contribution of exercising legs to the slow component of oxygen uptake kinetics in humans.  J Appl Physiol. 1991;  71 1245-1260
  • 28 Pringle JSM, Doust JH, Carter H, Tolfrey K, Campbell IT, Jones AM. Oxygen uptake kinetics during moderate, heavy and severe intensity submaximal exercise in humans: the influence of muscle fiber type and capillarisation.  Eur J Appl Physiol. 2003;  89 289-300
  • 29 Vandewalle H, Vautier JF, Kachouri M, Lechevalier JM, Monod H. Work-exhaustion time relationship and the critical power concept.  J Sports Med Phys Fit. 1997;  37 89-102
  • 30 Wasserman K, Whipp BJ, Koyl SN, Beaver WL. Anaerobic threshold and respiratory gas exchange during exercise.  J Appl Physiol. 1973;  35 236-243
  • 31 Whipp BJ. Dynamics of pulmonary gas exchange.  Circulation. 1987;  76 VI18-VI28
  • 32 Whipp BJ. Domains of aerobic function and their limiting parameters.  The Physiology and Pathophysiology of Exercise Tolerance. Steinacker JM, Ward SA (eds). 1996;  83-89
  • 33 Whipp BJ, Ward SA, Wasserman K. Respiratory markers of the anaerobic threshold.  Adv Cardiol. 1986;  35 47-64


Prof. L. Bosquet

Faculty of Sport Sciences

University of Poitiers

8 allée Jean Monnet

86000 Poitiers


Telefon: +33/549/453 340

Fax: +33/549/453 396