Endoskopie heute 2011; 24(3): 164-170
DOI: 10.1055/s-0031-1283721
Originalarbeit

© Georg Thieme Verlag KG Stuttgart ˙ New York

Neues von der Adenom-Karzinom-Sequenz

Colorectal Adenoma-Carcinoma-Sequence – An UpdateG. B. Baretton1 , D. E. Aust1
  • 1Institut für Pathologie, Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden
Further Information

Publication History

Publication Date:
26 September 2011 (online)

Zusammenfassung

Die kolorektale Adenom-Karzinom-Sequenz (AKS) stellt den Prototyp einer Mehrschritt-Karzino­genese dar. Nachdem zunächst die formale Pa­thogenese durch Korrelation von klinischen und pathohistologischen Befunden aufgeklärt worden war, gelang es, den einzelnen Stufen dieser Sequenz (aberranter Kryptenfokus, kleines / fortgeschrittenes Adenom, Adenokarzinom) auch charakteristische molekulargenetische Aberrationen zuzuordnen: Durch Akkumulation von Tumorsuppressorgen-Verlusten (APC-Mutation als Ini­tialschritt) und Onkogen-Aktivierungen kommt es zur Entstehung von Mikrosatelliten-stabilen (MSS), aneuploiden Karzinomen; dies wird heute als „traditioneller“ oder „Chromosomaler Instabilitäts (CIN)“-Karzinogeneseweg bezeichnet, über den sich die Mehrzahl der kolorektalen Karzi­nome (KRK) entwickelt. Beim Lynch-Syndrom, dem häufigsten hereditären KRK-Syndrom, führen Keimbahnmutationen der Mismatch-Repair-Gene (MMR-Gene) zur Entwicklung diploider, Mikrosatelliten-instabiler KRK (sog. MIN- / MSI-Signalweg), die morphologisch ebenfalls der AKS folgen. Die dritte und zuletzt entdeckte „serratierte Route“ unterscheidet sich in ihren Vorläuferläsionen und molekular von den beiden anderen Pfaden. Das Konzept der Mehrschritt-Karzinogenese bildet die Rationale für die klinisch praktizierte sekundäre KRK-Prävention mittels Koloskopie-Screening und endoskopischer Entfernung der Vorläuferläsionen. Die molekularen Aberrationen (z. B. im EGFR-Signalweg) stellen Selektionskriterien für zielgerichtete Therapien dar und bieten potenzielle Ansatzpunkte für eine Primärprävention. Dieser Beitrag gibt einen Überblick über aktuelle Erkenntnisse zur sog. AKS. 

Abstract

The colorectal adenoma-carcinoma-sequence is known as the prototype of multistep carcino­genesis. After defining the formal pathogenesis through correlation of clinical and pathohistological findings, the underlying molecular aberra­tions were allocated to the individual steps of the morphological sequence (aberrant crypt foci, early / advanced adenoma, adenocarcinoma): microsatellite stable (MSS), aneuploid adenocarcinomas develop through accumulation of losses in tumor suppressor genes (with mutation / loss of the gatekeeper APC as the initiating step) and activating mutations in oncogenes; this pathway is now referred to as the traditional, chromosomal instability (CIN) pathway of colorectal carcinogenesis through which most colorectal cancers (CRC) develop. In Lynch-syndrome, the most frequent hereditary colorectal cancer syndrome, germline mutations of mismatch-repair-genes (MMR-genes) lead to the development of microsatellite instable adenocarcinomas (MIN- or MSI-pathway) which morphologically follow the adenoma-carcinoma-sequence. These cancers are ­diploid, show multiple point mutations and MSI. The third “serrated” pathway was established very recently; it develops from different precursor lesions and shows different molecular alterations. The concept of multistep carcinogenesis constitutes the rationale for secondary cancer prevention by colonoscopy screening and endoscopical removal of all precursor lesions. The molecular aberrations of CRC (e. g. in the EGFR-pathway) serve as selection criteria for targeted ther­apies and potential starting points for primary cancer prevention. This manuscript will give an overview of current new insight in the adenoma-carcinoma-sequence. 

Literatur

  • 1 Ahnen D J. The American College of Gastroenterology Emily Couric Lecture – the adenoma-carcinoma sequence revisited: has the era of genetic tailoring finally arrived?.  Am J Gastroenterol. 2011;  106 190-198
  • 2 Jackman R J, Mayo C W. The adenoma-carcinoma sequence in cancer of the colon.  Surg Gynecol Obstet. 1951;  93 327-330
  • 3 Castleman B, Krickstein H I. Do adenomatous polyps of the colon become malignant?.  N Engl J Med. 1962;  267 469-475
  • 4 Morson B C. Precancerous lesions of the colon and rectum. Classification and controversial issues.  Jama. 1962;  179 316-321
  • 5 Risio M. Reprint of: the natural history of adenomas.  Best Pract Res Clin Gastroenterol. 2010;  24 397-406
  • 6 Boone C W, Kelloff G J, Freedman L S. Intraepithelial and postinvasive neoplasia as a stochastic continuum of clonal evolution, and its relationship to mechanisms of chemopreventive drug action.  J Cell Biochem Suppl. 1993;  17G 14-25
  • 7 Tannapfel A, Neid M, Aust D et al. The origins of colorectal carcinoma: specific nomenclature for different pathways and precursor lesions.  Dtsch Arztebl Int. 2010;  107 760-766
  • 8 Chen L C, Hao C Y, Chiu Y S et al. Alteration of gene expression in normal-appearing colon mucosa of APC(min) mice and human cancer patients.  Cancer Res. 2004;  64 3694-3700
  • 9 Risio M, Lipkin M, Candelaresi G et al. Correlations between rectal mucosa cell proliferation and the clinical and pathological features of nonfamilial neoplasia of the large intestine.  Cancer Res. 1991;  51 1917-1921
  • 10 Akedo I, Ishikawa H, Ioka T et al. Evaluation of epithelial cell proliferation rate in normal-appearing colonic mucosa as a high-risk marker for colorectal cancer.  Cancer Epidemiol Biomarkers Prev. 2001;  10 925-930
  • 11 Figueiredo P, Donato M, Urbano M et al. Aberrant crypt foci: endoscopic assessment and cell kinetics characterization.  Int J Colorectal Dis. 2009;  24 441-450
  • 12 Schoen R E, Mutch M, Rall C et al. The natural history of aberrant crypt foci.  Gastrointest Endosc. 2008;  67 1097-1102
  • 13 Eide T J. Risk of colorectal cancer in adenoma-bearing individuals within a defined population.  Int J Cancer. 1986;  38 173-176
  • 14 Hoff G, Foerster A, Vatn M H et al. Epidemiology of polyps in the rectum and colon. Recovery and evaluation of unresected polyps 2 years after detection.  Scand J Gastroenterol. 1986;  21 853-862
  • 15 Winawer S J, Zauber A G, Ho M N et al. Prevention of colorectal cancer by colonoscopic polypectomy. The National Polyp Study Workgroup.  N Engl J Med. 1993;  329 1977-1981
  • 16 Konishi F, Morson B C. Pathology of colorectal adenomas: a colonoscopic survey.  J Clin Pathol. 1982;  35 830-841
  • 17 Winawer S J, Zauber A G, Fletcher R H et al. Guidelines for colonoscopy surveillance after polypectomy: a consensus update by the US Multi-Society Task Force on Colorectal Cancer and the American Cancer Society.  Gastroenterology. 2006;  130 1872-1885
  • 18 Atkin W S, Morson B C, Cuzick J. Long-term risk of colorectal cancer after excision of rectosigmoid adenomas.  N Engl J Med. 1992;  326 658-662
  • 19 Bertario L, Russo A, Sala P et al. Predictors of metachronous colorectal neoplasms in sporadic adenoma patients.  Int J Cancer. 2003;  105 82-87
  • 20 Nusko G, Mansmann U, Altendorf-Hofmann A et al. Risk of invasive carcinoma in colorectal adenomas assessed by size and site.  Int J Colorectal Dis. 1997;  12 267-271
  • 21 Nusko G, Mansmann U, Partzsch U et al. Invasive carcinoma in colorectal adenomas: multivariate analysis of patient and adenoma characteristics.  Endoscopy. 1997;  29 626-631
  • 22 van Stolk R U, Beck G J, Baron J A et al. Adenoma characteristics at first colonoscopy as predictors of adenoma recurrence and characteristics at follow-up. The Polyp Prevention Study Group.  Gastroenterology. 1998;  115 13-18
  • 23 Yang G, Zheng W, Sun Q R et al. Pathologic features of initial adenomas as predictors for metachronous adenomas of the rectum.  J Natl Cancer Inst. 1998;  90 1661-1665
  • 24 Hiraoka S, Kato J, Tatsukawa M et al. Laterally spreading type of colorectal adenoma exhibits a unique methylation phenotype and K-ras mutations.  Gastroenterology. 2006;  131 379-389
  • 25 Vogelstein B, Fearon E R, Hamilton S R et al. Genetic alterations during colorectal-tumor development.  N Engl J Med. 1988;  319 525-532
  • 26 Boland C R, Goel A. Microsatellite instability in colorectal cancer.  Gastroenterology. 2010;  138 2073-2087
  • 27 Sandmeier D, Benhattar J, Martin P et al. Serrated polyps of the large intestine: a molecular study comparing sessile serrated adenomas and hyperplastic polyps.  Histopathology. 2009;  55 206-213
  • 28 Rashid A, Shen L, Morris J S et al. CpG island methylation in colorectal adenomas.  Am J Pathol. 2001;  159 1129-1135
  • 29 Kakar S, Deng G, Cun L et al. CpG island methylation is frequently present in tubulovillous and villous adenomas and correlates with size, site, and villous component.  Hum Pathol. 2008;  39 30-36
  • 30 Park E T, Oh H K, Gum Jr J R et al. HATH1 expression in mucinous cancers of the colorectum and related lesions.  Clin Cancer Res. 2006;  12 5403-5410
  • 31 Ishii T, Notohara K, Umapathy A et al. Tubular adenomas with minor villous changes show molecular features characteristic of tubulovillous adenomas.  Am J Surg Pathol. 2011;  35 212-220
  • 32 Pino M S, Chung D C. The chromosomal instability pathway in colon cancer.  Gastroenterology. 2010;  138 2059-2072
  • 33 Jean G W, Shah S R. Epidermal growth factor receptor monoclonal antibodies for the treatment of metastatic colorectal cancer.  Pharmacotherapy. 2008;  28 742-754
  • 34 Siena S, Sartore-Bianchi A, Di Nicolantonio F et al. Biomarkers predicting clinical outcome of epidermal growth factor receptor-targeted therapy in metastatic colorectal cancer.  J Natl Cancer Inst. 2009;  101 1308-1324
  • 35 Jiang Y, Kimchi E T, Staveley-O'Carroll K F et al. Assessment of K-ras mutation: a step toward personalized medicine for patients with colorectal cancer.  Cancer. 2009;  115 3609-3617
  • 36 Herendeen J M, Lindley C. Use of NSAIDs for the chemoprevention of colorectal cancer.  Ann Pharmacother. 2003;  37 1664-1674
  • 37 Waddell W R, Loughry R W. Sulindac for polyposis of the colon.  J Surg Oncol. 1983;  24 83-87
  • 38 Rice P L, Kelloff J, Sullivan H et al. Sulindac metabolites induce caspase- and proteasome-dependent degradation of beta-catenin protein in human colon cancer cells.  Mol Cancer Ther. 2003;  2 885-892
  • 39 Rice P L, Goldberg R J, Ray E C et al. Inhibition of extracellular signal-regulated kinase 1 / 2 phosphorylation and induction of apoptosis by sulindac metabolites.  Cancer Res. 2001;  61 1541-1547
  • 40 Lindor N M, Petersen G M, Hadley D W et al. Recommendations for the care of individuals with an inherited predisposition to Lynch syndrome: a systematic review.  JAMA. 2006;  296 1507-1517
  • 41 Aaltonen L A, Salovaara R, Kristo P et al. Incidence of hereditary non­polyp­osis colorectal cancer and the feasibility of molecular screening for the disease.  N Engl J Med. 1998;  338 1481-1487

Prof. Dr. med. habil. G. B. Baretton

Institut für Pathologie · Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden

Fetscherstraße 74

01307 Dresden

Phone: 03 51 / 4 58 30 00

Fax: 03 51 / 4 58 43 28

Email: gustavo.baretton@uniklinikum-dresden.de