Subscribe to RSS
DOI: 10.1055/s-0031-1290107
The Wieland-Miescher Ketone: A Journey from Organocatalysis to Natural Product Synthesis
Publication History
Publication Date:
09 December 2011 (online)
Abstract
The Hajos-Parrish-Eder-Sauer-Wiechert reaction can be considered as the origin of asymmetric organocatalysis, giving rise to the Wieland-Miescher ketone 1 (WMK), a versatile building block. Although 40 years have passed since its discovery, a highly enantioselective and scalable synthesis of the WMK has remained elusive. This account details a solution to that problem that came about in the development of methodology towards C-8a WMK analogues as part of the total synthesis of complex diterpene natural products. The work has been placed in the context of the historical background and reactivity of this important building block, highlighting the challenges faced by organocatalysis in large-scale reactions.
1 Introduction
2 The Wieland-Miescher Ketone
2.1 The Hajos-Parrish-Eder-Sauer-Wiechert Reaction: A Historical Perspective
2.2 Practicalities of the Wieland-Miescher Ketone Synthesis Using Proline
2.3 Alternative Catalysts for the Synthesis of the Wieland-Miescher Ketone
3 Background to Developing a New Wieland-Miescher Ketone Synthesis
4 Optimization of Method and Conditions
5 Key Reactions of the Wieland-Miescher Ketone
5.1 Reduction, Oxidation, Protection, and Non-C-C-Bond-Forming Reactions
5.2 C-C-Bond-Forming Reactions
5.3 Ring-Expansion and -Contraction Reactions
6 Conclusions and Future Considerations
Key words
Wieland-Miescher ketone - enantioselective direct aldol reaction - asymmetric organocatalysis - total synthesis - natural products
- 1
List B.Lerner RA.Barbas CF. J. Am. Chem. Soc. 2000, 122: 2395 - 2
Ahrendt KA.Borths CJ.MacMillan DWC. J. Am. Chem. Soc. 2000, 122: 4243 - 3
Bertelsen S.Jørgensen KA. Chem. Soc. Rev. 2009, 38: 2178 -
4a
Hajos ZG, andParrish DR. inventors; DE 2102623. -
4b
Eder U,Sauer GR, andWiechert R. inventors; DE 2014757. -
4c
Eder U.Sauer GR.Wiechert R. Angew. Chem., Int. Ed. Engl. 1971, 10: 496 ; Angew. Chem. 1971, 83, 492 -
4d
Hajos ZG.Parrish DR. J. Org. Chem. 1974, 39: 1615 - 5
MacMillan DWC. Nature 2008, 455: 304 - 6
Barbas CF. Angew. Chem. Int. Ed. 2008, 47: 42 -
7a
Corey EJ.Ohno M.Vatakencherry PA.Mitra RB. J. Am. Chem. Soc. 1961, 83: 1251 -
7b
Corey EJ.Ohno M.Mitra RB.Vatakencherry PA. J. Am. Chem. Soc. 1964, 86: 478 -
7c
Piers E.Britton RW.De Waal W. J. Chem. Soc. D 1969, 1069 -
7d
Piers E.De Waal W.Britton RW. J. Am. Chem. Soc. 1971, 93: 5113 -
7e
Heathcock CH.DelMar EG.Graham SL. J. Am. Chem. Soc. 1982, 104: 1907 -
7f
Smith AB.Mewshaw R. J. Org. Chem. 1984, 49: 3685 -
7g
Shishido K.Tokunaga Y.Omachi N.Hiroya K.Fukumoto K.Kametani T.
J. Chem. Soc., Chem. Commun. 1989, 1093 -
7h
Smith AB.Sunazuka T.Leenay TL.Kingery-Wood J. J. Am. Chem. Soc. 1990, 112: 8197 -
7i
Smith AB.Kingery-Wood J.Leenay TL.Nolen EG.Sunazuka T. J. Am. Chem. Soc. 1992, 114: 1438 -
7j
Grieco PA.Collins JL.Moher ED.Fleck TJ.Gross RS. J. Am. Chem. Soc. 1993, 115: 6078 -
7k
Paquette LA.Wang T.Philippo CMG.Wang S. J. Am. Chem. Soc. 1994, 116: 3367 -
7l
Ziegler FE.Wallace OB. J. Org. Chem. 1995, 60: 3626 -
7m
Dzierba CD.Zandi KS.Möllers T.Shea KJ. J. Am. Chem. Soc. 1996, 118: 4711 -
7n
Danishefsky SJ.Masters JJ.Young WB.Link JT.Snyder LB.Magee TV.Jung DK.Isaacs RCA.Bornmann WG.Alaimo CA.Coburn CA.Di Grandi MJ. J. Am. Chem. Soc. 1996, 118: 2843 -
7o
Stork G.West F.Lee HY.Isaacs RCA.Manabe S. J. Am. Chem. Soc. 1996, 118: 10660 -
7p
An J.Wiemer DF. J. Org. Chem. 1996, 61: 8775 -
7q
Paquette LA.Backhaus D.Braun R.Underiner TL.Fuchs K. J. Am. Chem. Soc. 1997, 119: 9662 -
7r
Harada N.Sugioka T.Ando Y.Uda H.Kuriki T. J. Am. Chem. Soc. 1988, 110: 8483 -
7s
Kurosu M.Marcin LR.Grinsteiner TJ.Kishi Y. J. Am. Chem. Soc. 1998, 120: 6627 -
7t
Karimi S.Tavares P. J. Nat. Prod. 2003, 66: 520 -
7u
Kende AS.Deng W.Zhong M.Guo X. Org. Lett. 2003, 5: 1785 -
7v
Deng W.Zhong M.Guo X.Kende AS. J. Org. Chem. 2003, 68: 7422 -
7w
Smith AB.Kanoh N.Ishiyama H.Minakawa N.Rainier JD.Hartz RA.Cho YS.Cui H.Moser WH. J. Am. Chem. Soc. 2003, 125: 8228 -
7x
Waters SP.Tian Y.Li Y.Danishefsky SJ. J. Am. Chem. Soc. 2005, 127: 13514 -
7y
Díaz S.González A.Bradshaw B.Cuesta J.Bonjoch J. J. Org. Chem. 2005, 70: 3749 -
7z
Peng X.Wong HNC. Chem. Asian J. 2006, 1: 111 -
(aa)
Ferraz HMC.Souza AJC.Tenius BSM.Bianco GG. Tetrahedron 2006, 62: 9232 -
(ab)
Chanu A.Safir I.Basak R.Chiaroni A.Arseniyadis S. Org. Lett. 2007, 9: 1351 -
(ac)
Hanessian S.Boyer N.Reddy GJ.Deschênes-Simard B. Org. Lett. 2009, 11: 4640 -
(ad)
Carneiro VMT.Ferraz HMC.Vieira TO.Ishikawa EE.Silva LF. J. Org. Chem. 2010, 75: 2877 - For other syntheses of natural products from the Wieland-Miescher ketone not depicted in Figure 1, see:
-
8a bulnesene:
Heathcock CH.Ratcliffe R. J. Am. Chem. Soc. 1971, 93: 1746 -
8b longifolene:
McMurry JE.Isser SJ. J. Am. Chem. Soc. 1972, 94: 7132 -
8c muzigadial:
Bosch MP.Camps F.Coll J.Guerrero A.Tatsuoka T.Meinwald J. J. Org. Chem. 1986, 51: 773 -
8d paspaline:
Mewshaw RE.Taylor MD.Smith AB. J. Org. Chem. 1989, 54: 3449 -
8e phytocassane D:
Yajima A.Mori K. Eur. J. Org. Chem. 2000, 4079 -
8f longifolene:
Karimi S.Tavares P. J. Nat. Prod. 2003, 66: 520 -
8g 21-isopentenylpaxilline:
Smith AB.Cui H. Org. Lett. 2003, 5: 587 -
8h nodulisporic acid F:
Smith AB.Davulcu AH.Kürti L. Org. Lett. 2006, 8: 1665 -
8i integric acid:
Waalboer DCJ.van Kalkeren HA.Schaapman MC.van Delft FL.Rutjes FPJT. J. Org. Chem. 2009, 74: 8878 -
8j carainterol A:
Ma K.Zhang C.Liu M.Chu Y.Zhou L.Hu C.Ye D. Tetrahedron Lett. 2010, 51: 1870 - 9 For a detailed overview see:
Mukherjee S.Yang JW.Hoffmann S.List B. Chem. Rev. 2007, 107: 5471 - 10
Wieland P.Miescher K. Helv. Chim. Acta 1950, 33: 2215 - For other racemic approaches to the Wieland-Miescher ketone see
-
11a
Wendler NL.Slates HL.Tishler M.
J. Am. Chem. Soc. 1951, 73: 3816 -
11b
Sondheimer F.Elad D. J. Am. Chem. Soc. 1957, 79: 5542 -
11c
Swaminathan S.Newman MS. Tetrahedron 1958, 2: 88 -
11d
Newman MS.Mekler AB. J. Am. Chem. Soc. 1960, 82: 4039 -
11e
Newman MS.Mekler AB. J. Am. Chem. Soc. 1960, 82: 4039 -
11f
Mekler AB.Ramachandran S.Swaminathan S.Newman MS. Org. Synth. Coll. Vol. V John Wiley & Sons; London: 1973. p.743 ; Org. Synth. 1961, 41, 56 -
11g
Sondheimer F.Elad D.
J. Am. Chem. Soc. 1957, 79: 5542 -
12a
Bahmanyar S.Houk KN. J. Am. Chem. Soc. 2001, 123: 11273 -
12b
Bahmanyar S.Houk KN.Martin HJ.List B. J. Am. Chem. Soc. 2003, 125: 2475 -
13a
Stork G.Brizzolara A.Landesman H.Szmuszkovicz J.Terrell R. J. Am. Chem. Soc. 1963, 85: 207 -
13b
Stork G.Saccomano NA. Tetrahedron Lett. 1987, 28: 2087 -
13c
The Chemistry
of Enamines
Rappoport Z. Wiley; New York: 1994. - 14
Machajewski TD.Wong C.-H. Angew. Chem. Int. Ed. 2000, 39: 1352 - 15
Jung ME. Tetrahedron 1976, 32: 3 - 16
List B.Hoang L.Martin HJ. Proc. Natl. Acad. Sci. U.S.A. 2004, 101: 5839 -
17a
Puchot C.Samuel O.Dunach E.Zhao S.Agami C.Kagan HB. J. Am. Chem. Soc. 1986, 108: 2353 -
17b
Agami C.Meynier F.Puchot C.Guilhem J.Pascard C. Tetrahedron 1984, 40: 1031 - 18
Hoang L.Bahmanyar S.Houk KN.List B. J. Am. Chem. Soc. 2003, 125: 16 - 19
Rajagopal D.Moni MS.Subramanian S.Swaminathan S. Tetrahedron: Asymmetry 1999, 10: 1631 -
20a
Bui T.Barbas CF. Tetrahedron Lett. 2000, 41: 6951 - For a modified approach using MeCN as the solvent see:
-
20b
Lazarski KE.Rich AA.Mascarenhas CM.
J. Chem. Educ. 2008, 85: 1531 - 21
Gutzwiller J.Buchschacher P.Fürst A. Synthesis 1977, 167 - 22
Buchschacher P.Fürst A. Org. Synth. 1985, 63: 3743 - 23
Harada N.Sugioka T.Uda H.Kuriki T. Synthesis 1990, 53 - 24
Tietze LF.Utecht J. Synthesis 1993, 957 -
25a
Hioki H.Hashimoto T.Kodama M. Tetrahedron: Asymmetry 2000, 11: 829 -
25b
Fuhshuku K.Funa N.Akeboshi T.Ohta H.Hosomi H.Ohba S.Sugai T.
J. Org. Chem. 2000, 65: 129 -
25c
Fuhshuku K.Tomita M.Sugai T. Adv. Synth. Catal. 2003, 345: 766 - 26
Kasai Y.Shimanuki K.Kuwahara S.Watanabe M.Harada N. Chirality 2006, 18: 177 - 27
Zhong G.Hoffmann T.Lerner RA.Danishefsky S.Barbas CF. J. Am. Chem. Soc. 1997, 119: 8131 -
28a
Davies SG.Sheppard RL.Smith AD.Thomson JE. Chem. Commun. 2005, 3802 -
28b
Davies SG.Russell AJ.Sheppard RL.Smith AD.Thomson JE. Org. Biomol. Chem. 2007, 5: 3190 - 29
Lacoste E.Vaique E.Berlande M.Pianet I.Vincent J.Landais Y. Eur. J. Org. Chem. 2007, 167 -
30a
Akahane Y.Inage N.Nagamine T.Inomata K.Endo Y. Heterocycles 2007, 74: 637 -
30b
Note catalyst 11 was first introduced by Barbas in a one-pot version where it was observed that without the presence of acid no dehydration took place, see ref. 20.
-
31a
Kanger T.Kriis K.Laars M.Kailas T.Müürisepp A.Pehk T.Lopp M. J. Org. Chem. 2007, 72: 5168 -
31b
Laars M.Kriis K.Kailas T.Müürisepp A.Pehk T.Kanger T.Lopp M. Tetrahedron: Asymmetry 2008, 19: 641 - 32
D’Elia V.Zwicknagl H.Reiser O. J. Org. Chem. 2008, 73: 3262 - 33
Guillena G.Nájera C.Viózquez SF. Synlett 2008, 3031 - 34
Almaºi D.Alonso DA.Nájera C. Adv. Synth. Catal. 2008, 350: 2467 - 36
Zhang X.Wang M.Tu Y.Fan C.Jiang Y.Zhang S.Zhang F. Synlett 2008, 2831 - 37
Fuentes de Arriba L.Simón L.Raposo C.Alcázar V.Morán JR. Tetrahedron 2009, 65: 4841 -
39a
Akahane Y.Inomata K.Endo Y. Heterocycles 2009, 77: 1065 -
39b
Akahane Y.Inomata K.Endo Y. Heterocycles 2011, 82: 1727 - 40
Fuentes de Arriba L.Seisdedos DG.Simón L.Alcázar V.Raposo C.Morán JR. J. Org. Chem. 2010, 75: 8303 - 41
Díaz S.Cuesta J.González A.Bonjoch J. J. Org. Chem. 2003, 68: 7400 - 42
Gloer JB.Rinderknecht BL.Wicklow DT.Dowd PF. J. Org. Chem. 1989, 54: 2530 - 43
TePaske MR.Gloer JB.Wicklow DT.Dowd PF. J. Org. Chem. 1989, 54: 4743 - 44
Gloer JB.TePaske MR.Sima JS.Wicklow DT.Dowd PF. J. Org. Chem. 1988, 53: 5457 - 45
Staub GM.Gloer JB.Wicklow DT.Dowd PF.
J. Am. Chem. Soc. 1992, 114: 1015 - 46 For an approach to aflavinine 24 see:
Danishefsky S.Chackalamannil S.Harrison P.Silvestri M.Cole P.
J. Am. Chem. Soc. 1985, 107: 2474 -
47a
Liu Y.McWhorter WW.Hadden CE. Org. Lett. 2003, 5: 333 -
47b
Ho GA.Nouri DH.Tantillo DJ. Tetrahedron Lett. 2009, 50: 1578 -
47c
Marcos IS.Moro RF.Costales I.Escola MA.Basabe P.Díez D.Urones JG. Tetrahedron 2009, 65: 10235 -
48a
Crow WD. Aust. J. Chem. 1962, 15: 159 -
48b
Fridrichsons J.Mathieson AMcL. Tetrahedron Lett. 1960, 1: 18 -
48c
Fridrichsons J.Mathieson AMcL. Acta Crystallogr. 1963, 16: 206 - 49
Iwagawa T.Kaneko M.Okamura H.Nakatani M.van Soest RWM. J. Nat. Prod. 1998, 61: 1310 - 50
Johnson TA.Amagata T.Sashidhara KV.Oliver AG.Tenney K.Matainaho T.Ang KK.McKerrow JH.Crews P. Org. Lett. 2009, 11: 1975 - 51
Díaz S.González A.Bradshaw B.Cuesta J.Bonjoch J. J. Org. Chem. 2005, 70: 3749 - 52 For other examples of the difficulty
of 1,4 addition to the WMK 1 see:
Streuff J. Chem.-Eur. J. 2011, 17: 5507 - 53
Lipshutz BH.Ellsworth EL. J. Am. Chem. Soc. 1990, 112: 7440 -
54a
Kwiatkowski S.Syed A.Brock CP.Watt DS. Synthesis 1989, 818 -
54b
Hanselmann R.Benn M. Synth. Commun. 1996, 26: 945 - For an alternative synthesis of the allyl WMK analogue see:
-
54c
Hiroya K.Takahashi T.Shimomae K.Sakamoto T. Chem. Pharm. Bull. 2005, 53: 207 -
54d
Inomata K.Barragué M.Paquette LA. J. Org. Chem. 2005, 70: 533 -
54e
Ramachary DB.Kishor M.
J. Org. Chem. 2007, 72: 5056 - For examples of WMK analogues in total synthesis see:
-
55a
ref. 7l.
-
55b
Hamilton RJ.Mander LN.Sethi SP. Tetrahedron 1986, 42: 2881 -
55c
Nicolaou KC.Roecker AJ.Monenschein H.Guntupalli P.Follmann M. Angew. Chem. Int. Ed. 2003, 42: 3637 - 56
Prakash C.Mohanakrishnan AK. Eur. J. Org. Chem. 2008, 1535 - 57
Rajamannar T.Palani N.Balasubramanian K. Synth. Commun. 1993, 23: 3095 - 58
Inomata K.Barragué M.Paquette LA. J. Org. Chem. 2005, 70: 533 - 59
Kennedy JWJ.Vietrich S.Weinmann H.Brittain DEA. J. Org. Chem. 2008, 73: 5151 - 60
Piers E.Grierson JR. J. Org. Chem. 1977, 42: 3755 - 62
Birch AJ. J. Chem. Soc. 1947, 102 - 63
Vidari G.Lanfranchi G.Masciaga F.Moriggi J. Tetrahedron: Asymmetry 1996, 7: 3009 - 64
Bradshaw B.Etxebarría-Jardi G.Bonjoch J.Viózquez S.Guillena G.Nájera C. Adv. Synth. Catal. 2009, 351: 2482 - 66 The use of solvents resulted in
very poor reactivity and significantly reduced enantioselectivity.
For an early solvent free organocatalytic reaction using proline
see:
Rajagopal D.Rajagopalan K.Swaminathan S. Tetrahedron: Asymmetry 1996, 7: 2189 - 67
Viózquez S.Guillena G.Nájera C.Bradshaw B.Etxebarría-Jardi G.Bonjoch J. Org. Synth. 2011, 88: 317 - 68
Etxebarria-Jardí G. Ph.D Thesis University of Barcelona; Spain: 2010. - 69
Bradshaw B.Etxebarria-Jardí G.Bonjoch J. J. Am. Chem. Soc. 2010, 132: 5966 - 70
Bradshaw B.Etxebarría-Jardi G.Bonjoch J.Viózquez S.Guillena G.Nájera C. Org. Synth. 2011, 88: 330 - 71
Walji AM.MacMillan DWC. Synlett 2007, 1477 - 72
Ward DE.Rhee CK.Zoghaib WM. Tetrahedron Lett. 1988, 29: 517 - 73
Sarkar DC.Das AR.Ranu BC. J. Org. Chem. 1990, 55: 5799 - 74
Midland MM.McLoughlin JI.Gabriel J. J. Org. Chem. 1989, 54: 159 - 75
Andrews GC.Crawford TC. Tetrahedron Lett. 1980, 21: 693 - 76
Ley SV.Antonello A.Balskus EP.Booth DT.Christensen SB.Cleator E.Gold H.Högenauer K.Hünger U.Myers RM.Oliver SF.Simic O.Smith MD.Søhoel H.Woolford AJA. Proc. Natl. Acad. Sci. U.S.A. 2004, 101: 12073 - 77
Van Gool M.Vandewalle M. Eur. J. Org. Chem. 2000, 3427 - 78
Banerjee A.Poon PS.Laya M. Synth. Commun. 2003, 33: 1929 - 79
Ramachary DB.Sakthidevi R. Org. Biomol. Chem. 2008, 6: 2488 - 80
Ito H.Ishizuka T.Arimoto K.Miura K.Hosomi A. Tetrahedron Lett. 1997, 38: 8887 - 81
von Holleben MLA.Zucolotto M.Zini CA.Oliveira ER. Tetrahedron 1994, 50: 973 - 82
Park K.Scott WJ.Wiemer DF. J. Org. Chem. 1994, 59: 6313 - 83
Mahoney WS.Brestensky DM.Stryker JM. J. Am. Chem. Soc. 1988, 110: 291 - 84
Reusch W.Grimm K.Karoglan JE.Martin J.Subrahamanian KP.Toong Y.Venkataramani PS.Yordy JD.Zoutendam P. J. Am. Chem. Soc. 1977, 99: 1953 - 85
Reusch W.Grimm K.Karoglan JE.Martin J.Subrahamanian KP.Venkataramani PS.Yordy JD.
J. Am. Chem. Soc. 1977, 99: 1958 - 86
Ciceri P.Demnitz FWJ. Tetrahedron Lett. 1997, 38: 389 - 87
Kawabata T.Mizugaki T.Ebitani K.Kaneda K. Tetrahedron Lett. 2001, 42: 8329 - 88
Bauduin G.Pietrasanta Y. Tetrahedron 1973, 29: 4225 - 89
Hwu JR.Wetzel JM. J. Org. Chem. 1985, 50: 3946 - 90
Swaminathan S.Newman MS. Tetrahedron 1958, 2: 88 - 91
Zorn N.Lett R. Tetrahedron Lett. 2006, 47: 4331 - 92
Grieco PA.Ferrino S.Oguri T. J. Org. Chem. 1979, 44: 2593 -
93a For
the synthesis of compounds 73-82 see:
Vellekoop AS.Smith RAJ. Tetrahedron 1998, 54: 11971 -
93b For the synthesis of 83 see:
Lo L.Shie J.Chou T. J. Org. Chem. 2002, 67: 282 -
93c For the synthesis of 84 see:
Enomoto M.Kuwahara S. J. Org. Chem. 2010, 75: 6286 -
93d
For the synthesis of 85 see ref. 24.
-
94a
Heathcock CH.Ratcliffe R. J. Am. Chem. Soc. 1971, 93: 1746 -
94b
Payette JN.Honda T.Yoshizawa H.Favaloro FG.Gribble GW. J. Org. Chem. 2006, 71: 416 - 95
Newman MS.Mekler AB. J. Am. Chem. Soc. 1960, 82: 4039 - 96
Jones JB.Leman JD.Marr PW. Can. J. Chem. 1971, 49: 1604 -
97a
Zaidi JH.Waring AJ. J. Chem. Soc., Chem. Commun. 1980, 618 -
97b
Waring AJ.Zaidi JH. J. Chem. Soc., Perkin Trans. 1 1985, 631 - 98
Trost BM.Salzmann TN. J. Chem. Soc., Chem. Commun. 1975, 571 -
99a
Bortolini O.Conte V.Chiappe C.Fantin G.Fogagnolo M.Maietti S. Green Chem. 2002, 4: 94 -
99b
Bortolini O.Campestrini S.Conte V.Fantin G.Fogagnolo M.Maietti S. Eur. J. Org. Chem. 2003, 4804 - 100
Molander GA.Hahn G. J. Org. Chem. 1986, 51: 2596 - 101
Zhu R.Xing L.Wang X.Cheng C.Liu B.Hu Y. Synlett 2007, 2267 - 102
Ottolina G.de Gonzalo G.Carrea G.Danieli B. Adv. Synth. Catal. 2005, 347: 1035 - 103
Shimizu T.Hiranuma S.Yoshioka H. Chem. Pharm. Bull. 1989, 37: 1963 - 104
Gopalakrishnan G.Jayaraman S.Rajagopalan K.Swaminathan S. Synthesis 1983, 797 - 105
Chemler SR.Danishefsky SJ. Org. Lett. 2000, 2: 2695 - 106
Newman MS.Ramachandran S.Sankarappa SK.Swaminathan S. J. Org. Chem. 1961, 26: 727 - 107
Curini M.Epifano F.Marcotullio MC.Rosati O.Rossi M. Synlett 1999, 315 - 108
Golinski M.Brock CP.Watt DS. J. Org. Chem. 1993, 58: 159 - 109
Geetha P.Narasimhan K.Swaminathan S. Tetrahedron Lett. 1979, 20: 565 -
110a
Smith RAJ.Hannah DJ. Tetrahedron 1979, 35: 1183 -
110b
Bradshaw B.Etxebarria-Jardi G.Bonjoch J. Org. Biomol. Chem. 2008, 6: 772 - 111
Henze W.Gärtner T.Gschwind RM. J. Am. Chem. Soc. 2008, 130: 13718 - 112
Hanselmann R. Ph.D. Thesis University of Calgary; Canada: 1996. https://dspace.ucalgary.ca/bitstream/880/29331/1/20740Hanselmann.pdf - 113
Hikage N.Furukawa H.Takao K.Kobayashi S. Tetrahedron Lett. 1998, 39: 6237 - 114
Flemming S.Kabbara J.Nickisch K.Neh H.Westermann J. Tetrahedron Lett. 1994, 35: 6075 - 115
Flemming S.Kabbara J.Nickisch K.Neh H.Westermann J. Synthesis 1995, 317 - 116
Hagiwara H.Okamoto T.Harada N.Uda H. Tetrahedron 1995, 51: 9891 - 117
Ling T.Chowdhury C.Kramer BA.Vong BG.Palladino MA.Theodorakis EA. J. Org. Chem. 2001, 66: 8843 - 118
Arséniyadis S.Rodriguez R.Cabrera E.Thompson A.Ourisson G. Tetrahedron 1991, 47: 7045 - 119
Pemp A.Seifert K. Tetrahedron Lett. 1997, 38: 2081 -
120a
Smith AB.Kürti L.Davulcu AH.Cho YS. Org. Process Res. Dev. 2007, 11: 19 -
120b
Lanfranchi DA.Baldovini N.Hanquet G. Synthesis 2008, 3775 -
120c For the original procedure,
see:
Kirk DN.Petrow V. J. Chem. Soc. 1962, 1091 - 121
Churruca F.Fousteris M.Ishikawa Y.von Wantoch Rekowski M.Hounsou C.Surrey T.Giannis A. Org. Lett. 2010, 12: 2096 -
122a
Stork G.Danishefsky S.Ohashi M. J. Am. Chem. Soc. 1967, 89: 5459 -
122b
Stork G.McMurry JE. J. Am. Chem. Soc. 1967, 89: 5464 - 123
Shah N.Scanlan TS. Bioorg. Med. Chem. Lett. 2004, 14: 5199 - 124
Magnus P.Taylor GM. J. Chem. Soc., Perkin Trans. 1 1991, 2657 - 125
Greco CV.Gray RP. Tetrahedron 1970, 26: 4329 - 126
Abbiati G.Arcadi A.Bianchi G.Di Giuseppe S.Marinelli F.Rossi E. J. Org. Chem. 2003, 68: 6959 - 127
Zhang X.Li X.Allan GF.Musto A.Lundeen SG.Sui Z. Bioorg. Med. Chem. Lett. 2006, 16: 3233 - 128
Guerrero A.Parrilla A.Camps F. Tetrahedron Lett. 1990, 31: 1873 - 129 For initial work see also:
Magee TV.Bornmann WG.Isaacs RCA.Danishefsky SJ. J. Org. Chem. 1992, 57: 3274 - 130
Golinski M.Vasudevan S.Floresca R.Brock CP.Watt DS. Tetrahedron Lett. 1993, 34: 55 - 131
Lu Y.Peng X. Org. Lett. 2011, 13: 2940 - 132
Liu H.Siegel DR.Danishefsky SJ. Org. Lett. 2006, 8: 423 - 133
Chanu A.Castellote I.Commeureuc A.Safir I.Arseniyadis S. Tetrahedron: Asymmetry 2006, 17: 2565
References
Catalysts 16 and 17 were tested in the synthesis of compound 52 (Scheme [9] ) not the WMK itself.
38Furthermore it would seem that the enantioselectivities were measured directly from the reaction mixture not the purified compounds. Since prolinamide intermediates were formed in the reaction mixture it may well be that kinetic resolution led to an increase in one enantiomer. The observation that the related catalyst 17, screened by Zhang gave a consid-erably reduced enantioselectivity would seem to support this hypothesis.
61Bradshaw, B.; Bonjoch, J. unpublished work.
65This catalyst was first introduced by the Najera group (see ref. 33) and with whom the methodological part of this work was developed in collaboration.