RSS-Feed abonnieren
DOI: 10.1055/s-0031-1290325
Abnormal and Direct para-Trifluoroacetylation of Branched Alkyl Phenyl Ketones by Magnesium-Promoted Reductive Aromatic Substitution
Publikationsverlauf
Publikationsdatum:
27. Januar 2012 (online)

Abstract
Magnesium-promoted reduction of branched alkyl phenyl ketones in the presence of ethyl trifluoroacetate and chlorotrimethylsilane in N,N-dimethylformamide (DMF), followed by air oxidation, and the subsequent treatment of tetrabutylammonium fluoride brought about selective and efficient formation of the corresponding aromatic para-substituted diketones possessing a trifluoroacetyl group in good yields through abnormal addition toward the para positions of the aromatic ketones in good yields.
Key words
trifluoroacetylation - cross-coupling - electron transfer - magnesium - reduction
- Supporting Information for this article is available online:
- Supporting Information (PDF)
- 1
Moilliet JS. J. Fluorine Chem. 2001, 109: 13Reference Ris Wihthout Link - 2
Umemoto T.Fukami S.Tomizawa G.Harasawa K.Kawada K.Tomioka K. J. Am. Chem. Soc. 1990, 112: 8563Reference Ris Wihthout Link - 3
Singh RP.Shreeve JM. Synthesis 2002, 2561Reference Ris Wihthout Link - 4
Hayashi M.Hashimoto S.Noyori R. Chem. Lett. 1984, 1747Reference Ris Wihthout Link - 5
Yoneda N.Fukuhara T.Yamagishi K.Suzuki A. Chem. Lett. 1987, 1675Reference Ris Wihthout Link - 6
Munyemana F.Frisque-Hesbain A.-M.Devos A.Ghosez L. Tetrahedron Lett. 1989, 30: 3077Reference Ris Wihthout Link - 7
Itoh Y.Mikami K. J. Fluorine Chem. 2006, 127: 539Reference Ris Wihthout Link - 8
Mizuta S.Shibata N.Hibino M.Nagano S.Nakamura S.Toru T. Tetrahedron 2007, 63: 8521Reference Ris Wihthout Link - 9
Kawai H.Kusuda A.Mizuta S.Nakamura S.Funahashi Y.Masuda H.Shibata N. J. Fluorine Chem. 2009, 130: 762Reference Ris Wihthout Link - 10
Keumi T.Shimada M.Takahashi M.Kitajima H. Chem. Lett. 1990, 783Reference Ris Wihthout Link - 11
Mo J.Xu L.Xiao J. J. Am. Chem. Soc. 2005, 127: 751Reference Ris Wihthout Link - 12
Creary X. J. Org. Chem. 1987, 52: 5026Reference Ris Wihthout Link - 13
Zhu L.Miao Z.Sheng C.Yao J.Zhuang C.Zhang W. J. Fluorine Chem. 2010, 131: 800Reference Ris Wihthout Link - 14
Kiselyov AS.Harvey RG. Tetrahedron Lett. 1995, 36: 4005Reference Ris Wihthout Link - 15
Ruiz J.Astruc D.Gilbert L. Tetrahedron Lett. 1996, 37: 4511Reference Ris Wihthout Link - 16
Salazar J.López SE.Rebollo O. J. Fluorine Chem. 2003, 124: 111Reference Ris Wihthout Link - 17
López SE.Pérez Y.Restrepo J.Salazar J.Charris J. J. Fluorine Chem. 2007, 128: 566Reference Ris Wihthout Link - 18
Prashad M.Hu B.Har D.Repic O.Blacklock TJ. Tetrahedron Lett. 2000, 41: 9957Reference Ris Wihthout Link - 19
Ohtaka J.Sakamoto T.Kikugawa Y. Tetrahedron Lett. 2009, 50: 1681Reference Ris Wihthout Link - 20
Gassman PG.O’Reilly NJ. J. Org. Chem. 1987, 52: 2481Reference Ris Wihthout Link - 21
Peláez WJ.Burgos Paci MA.Argüello GA. Tetrahedron Lett. 2009, 50: 1934Reference Ris Wihthout Link - 22
Kim J.Jang DO. Tetrahedron Lett. 2010, 51: 683Reference Ris Wihthout Link - 23
Ohno T.Sakai M.Ishino Y.Shibata T.Maekawa H.Nishiguchi I. Org. Lett. 2001, 3: 3439Reference Ris Wihthout Link - 24
Maekawa H.Ozaki T.Nishiguchi I. Tetrahedron Lett. 2010, 51: 796Reference Ris Wihthout Link - 27
Mandell L.Johnston JC.Day RA. J. Org. Chem. 1978, 43: 1616Reference Ris Wihthout Link - 28
Brieger G.Nestrick TJ.Fu TH. J. Org. Chem. 1979, 44: 1876Reference Ris Wihthout Link - 29
Aulenta F.Hölemann A.Reißig H.-U. Eur. J. Org. Chem. 2006, 1733Reference Ris Wihthout Link - 30
Prabhu UDG.Eapen KC.Tamboraki C. J. Org. Chem. 1984, 49: 2792Reference Ris Wihthout Link - 31
Marsilje TH.Hedrick MP.Desharnais J.Tavassoli A.Zhang Y.Wilson IA.Benkovic SJ.Boger DL. Bioorg. Med. Chem. 2003, 11: 4487Reference Ris Wihthout Link
References and Notes
Aprotic polar solvent is required for this coupling reaction. Use of DMF as a solvent gave better yield of coupling compounds than that of NMP.
26Only para-substituted compounds were isolated while ortho-substituted ones can not be detected by gas chromatography. The reason is not clear, but it may be attributed to steric effects between the acyl group on the benzene ring and the acetal of trifluoroacetyl group.
32
1-[4-(1-Ethoxy-2,2,2-trifluoro-1-trimethylsiloxyethyl)-phenyl]-2-methylpropan-1-one
(4e); Typical Procedure for the Coupling Reaction of Isobutyrophenone
and Ethyl Trifluoroacetate
A mixture of TMSCl (20
mmol), ethyl trifluoroacetate (50 mmol), magnesium turnings (15
mmol) for the Grignard reagent with no pretreatment, and anhyd DMF
(10 mL) was placed in a 100 mL four-necked flask and after activation
of magnesium for 30 min, a solution of isobutyrophenone (5 mmol)
in anhyd DMF (20 mL) was added dropwise at r.t. The reaction mixture
was stirred for 6 h. Then, 1 M HCl (50 mL) was added to the flask,
and the mixture was stirred for 30 min. The reaction mixture was
extracted with EtOAc. Usual workup, subsequent silica gel column chromatography
gave 1-[4-(1-ethoxy-2,2,2-trifluoro-1-trimethylsiloxyethyl)phenyl]-2-methylpropan-1-one
(4e) in 63% yield.
¹H
NMR (400 MHz, CDCl3): δ = 0.26 (9 H,
s), 1.23 (6 H, d, J = 8.0
Hz), 1.24 (3 H, t, J = 8.0
Hz), 3.35 (1 H, sept, J = 8.0 Hz),
3.49-3.59 (2 H, m), 7.70 (2 H, d, J = 8.3
Hz), 7.97 (2 H, d, J = 8.3
Hz) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 1.08, 14.72,
19.03, 35.54, 58.56, 97.65 (q, ²
J
CF = 31.3
Hz), 122.38 (q, ¹
J
CF = 287.5
Hz), 127.91, 128.46, 136.97, 140.83, 204.05 ppm. ¹9F
NMR (376 MHz, CDCl3): δ = -81.63
ppm. IR (neat): 3063, 2978, 1687, 1384, 847 cm-¹.
LRMS (EI): m/z = 362 [M+].
HRMS (EI): m/z calcd for C17H25O3F3Si: 362.1525;
found: 362.1573.
2-Methyl-1-(4-trifluoroacetylphenyl)propan-1-one
(5e); Typical Procedure for the Desilylation of Acetal 4e
To
a solution of 4e (2.5 mmol) in anhyd THF
(10 mL) is added dropwise 1 M TBAF (1 mL) at -15 ˚C,
and the reaction mixture was stirred for 30 min. Then the reaction mixture
was added to 100 mL of H2O and ice, and stirring was
continued for 30 min. The product was extracted with EtOAc. Usual
workup and subsequent silica gel column chromatography gave 2-methyl-1-(4-trifluoroacetylphenyl)-propan-1-one
(5e) in 62% yield. ¹H
NMR (400 MHz, CDCl3): δ = 1.24 (6 H,
d, J = 6.6
Hz), 3.56 (1 H, sept, J = 6.6 Hz),
8.08 (2 H, d, J = 8.4
Hz), 8.16 (2 H, d, J = 8.4
Hz) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 18.77,
36.05, 116.42 (q, ¹
J
CF = 291.0
Hz), 128.68, 130.35 (q, ³
J
CF = 1.8
Hz), 132.60, 141.29, 180.56 (q, ²
J
CF = 36.0
Hz), 203.47 ppm. ¹9F NMR (376 MHz, CDCl3): δ = -72.05
ppm. IR (neat): 3023, 2977, 1726, 1689, 1214, 857, 759 cm-¹.
LRMS (EI): m/z = 244 [M+].
HRMS (EI): m/z calcd for C12H11O2F3:
244.0711; found: m/z = 244.0696.