Synlett 2012; 23(12): 1797-1800
DOI: 10.1055/s-0031-1290405
letter
© Georg Thieme Verlag Stuttgart · New York

Lewis Base Organocatalyzed Enantioselective Hydrosilylation of 1,4-Benzoxazines

Yan Jiang
a  Key Laboratory for Asymmetric Synthesis & Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. of China
b  Graduate School of Chinese Academy of Sciences, Beijing 100049, P. R. of China, Fax: +86(28)85257883   Email: xmzhang@cioc.ac.cn
,
Li-Xin Liu
a  Key Laboratory for Asymmetric Synthesis & Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. of China
b  Graduate School of Chinese Academy of Sciences, Beijing 100049, P. R. of China, Fax: +86(28)85257883   Email: xmzhang@cioc.ac.cn
,
Wei-Cheng Yuan
a  Key Laboratory for Asymmetric Synthesis & Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. of China
,
Xiao-Mei Zhang*
a  Key Laboratory for Asymmetric Synthesis & Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. of China
› Author Affiliations
Further Information

Publication History

Received: 02 April 2012

Accepted after revision: 06 May 2012

Publication Date:
21 June 2012 (online)


Abstract

A chiral Lewis base organocatalyzed enantioselective hydrosilylation of 1,4-benzoxazines is presented. The reactions ­afforded various enantioenriched 3-substituted dihydro-2H-1,4-benzoxazines with high yields (up to 98%) in moderate enantioselectivities (up to 87% ee).

Supporting Information

 
  • References and Notes


    • For selected examples, see:
    • 1a Brown KS, Djerassi C. J. Am. Chem. Soc. 1964; 86: 2451
    • 1b Hayakawa I, Atarashi S, Yokohama S, Imamura M, Sakano K, Furukawa M. Antimicrob. Agents Chemother. 1985; 29: 163
    • 1c Bouzard D In Antibiotics and Antiviral Compounds . Korhn K, Rirst HA, Maag H. VCH; Weinheim: 1993
    • 1d Belattar A, Saxton JE. J. Chem. Soc., Perkin Trans. 1 1992; 679
    • 1e Daiichi S. Drugs Future 1992; 17: 559
    • 1f Shim JY, Collantes ER, Welsh WJ. J. Med. Chem. 1998; 41: 4521
    • 1g McAllister SD, Rizvi G, Anavi-Goffer S, Hurst DP, Barnett-Norris J, Lynch DL, Reggio PH, Abood ME. J. Med. Chem. 2003; 46: 5139
    • 1h Achari B, Mandal SB, Dutta PK, Chowdhury C. Synlett 2004; 2449
    • 1i Jiao PF, Zhao BX, Wang WW, Shin DS, He QX, Wan MS, Shin DS, Miao JY. Bioorg. Med. Chem. Lett. 2006; 16: 2862
    • 2a Largeron M, Lockhart B, Pfeiffer B, Fleury MB. J. Med. Chem. 1999; 42: 5043
    • 2b Mayer S, Arrault A, Guillaumet G, Merour JY. J. Heterocycl. Chem. 2001; 38: 221
    • 2c Majumdar KC, Ray K, Ponra S. Tetrahedron Lett. 2010; 51: 5437
    • 2d Ciske FL, Barbachyn MR, Genin MJ, Grega KC, Lee CS, Dolak LA, Seest EP, Watt W, Adams WJ, Friis JM, Ford CW, Zurenko GE. Bioorg. Med. Chem. Lett. 2003; 13: 4235
    • 3a Fujiwara T, Tsurumi H, Sato YT. EP 0304684, 1989
    • 3b Hayakawa J, Atarashi S, Yokohama S, Imamura M, Higashihashi N, Oshima M. EP 0206283, 1986
    • 3c Charushin VN, Krasnov VP, Levit GL, Korolyova MA, Kodess MI, Chupakhin ON, Kim MH, Lee HS, Park YJ, Kim KC. Tetrahedron: Asymmetry 1999; 10: 2691
    • 3d Miyadera A, Imura A. Tetrahedron: Asymmetry 1999; 10: 119
    • 3e Krasnov VP, Levit GL, Bukrina IM, Andreeva IN, Sadretdinova LS, Korolyova MA, Kodess MI, Charushin VN, Chupakhin ON. Tetrahedron: Asymmetry 2003; 14: 1985
    • 3f Krasnov VP, Levit GL, Kodess MI, Charushin VN, Chupakhin ON. Tetrahedron: Asymmetry 2004; 15: 859
    • 3g Potemkin VA, Krasnov VP, Levit GL, Bartashevich EV, Andreeva IN, Kuzminsky MB, Anikin NA, Charushin VN, Chupakhin ON. Mendeleev Commun. 2004; 14: 69
    • 4a Atarashi S, Tsurumi H, Fujiwara T, Hayakawa I. J. Heterocycl. Chem. 1991; 28: 329
    • 4b Kang SB, Ahn EJ, Kim Y. Tetrahedron Lett. 1996; 37: 9317
    • 4c Xie LJ. Chin. Chem. Lett. 1995; 6: 857
    • 4d Adrio J, Carretero JC, Ruano JL. G, Pallarés A, Vicioso M. Heterocycles 1999; 51: 1563
    • 4e Sakano K, Yokohama S, Hayakawa I, Atarashi S, Kadoya S. Agric. Biol. Chem. 1987; 51: 1265
    • 4f Imamura M, Hayakawa I. Chem. Pharm. Bull. 1987; 35: 1896
    • 5a Satoh K, Inenaga M, Kanai K. Tetrahedron: Asymmetry 1998; 9: 2657
    • 5b Zhou YG, Yang PY, Han XW. J. Org. Chem. 2005; 70: 1679
    • 5c Rueping M, Antonchick AP, Theissmann T. Angew. Chem. Int. Ed. 2006; 45: 6751
    • 5d Rueping M, Sugiono E, Steck A, Theissmann T. Adv. Synth. Catal. 2010; 352: 281
    • 5e Chen QA, Gao K, Duan Y, Ye ZS, Shi L, Yang Y, Zhou YG. J. Am. Chem. Soc. 2012; 134: 2442
    • 5f Malkov AV, Vranková K, Stoncius S, Kočovský P. J. Org. Chem. 2009; 74: 5839

      For reviews on Lewis base activation of Lewis acids, see:
    • 6a Rendler S, Oestreich M. Synthesis 2005; 1727
    • 6b Orito Y, Nakajima M. Synthesis 2006; 1391
    • 6c Denmark SE, Beutner GL. Angew. Chem. Int. Ed. 2008; 47: 1560 ; Angew. Chem. 2008, 120, 1584

      For reviews, see:
    • 7a Kočovský P, Malkov AV. Chiral Lewis Bases as Catalysts . In Enantioselective Organocatalysis . Dalko PI. Wiley-VCH; Weinheim: 2007. 255
    • 7b Kagan HB. Organocatalytic Enantioselective Reduction of Olefins, Ketones and Imines. In Enantioselective Organocatalysis. Dalko PI. Wiley-VCH; Weinheim: 2007. 391
    • 7c Guizzetti S, Benaglia M. Eur. J. Org. Chem. 2010; 5529
    • 7d Weickgenannt A, Oestreich M. ChemCatChem 2011; 3: 1527

      For representative examples, see:
    • 8a Malkov AV, Stončius S, Vranková K, Arndt M, Kočovský P. Chem.–Eur. J. 2008; 14: 8082
    • 8b Malkov AV, Stončius S, Kočovský P. Angew. Chem. Int. Ed. 2007; 46: 3722
    • 8c Malkov AV, Liddon AJ. P. S, Ramirez-Lopez P, Bendova L, Haigh D, Kočovský P. Angew. Chem. Int. Ed. 2006; 45: 1432
    • 8d Xiao YC, Wang C, Yao Y, Sun J, Chen YC. Angew. Chem. Int. Ed. 2011; 50: 10661
    • 8e Wu XJ, Li Y, Wang C, Zhou L, Lu XX, Sun J. Chem.–Eur. J. 2011; 17: 2846
    • 8f Pei D, Zhang Y, Wei SY, Wang M, Sun J. Adv. Synth. Catal. 2008; 350: 619
    • 8g Zhou L, Wang Z, Wei S, Sun J. Chem. Commun. 2007; 2977
    • 8h Pei D, Wang ZY, Wei SY, Zhang Y, Sun J. Org. Lett. 2006; 8: 5913
    • 8i Onomura O, Kouchi Y, Iwasaki F, Matsumura Y. Tetrahedron Lett. 2006; 47: 3751
    • 8j Guizzetti S, Benaglia M, Bonsignore M, Raimondi L. Org. Biomol. Chem. 2011; 9: 739
    • 8k Guizzetti S, Benaglia M, Rossi S. Org. Lett. 2009; 11: 2928
    • 8l Sugiura M, Kumahara M, Nakajima M. Chem. Commun. 2009; 3585
    • 8m Xue ZY, Liu LX, Jiang Y, Yuan WC, Zhang XM. Eur. J. Org. Chem. 2012; 251
    • 8n Jiang Y, Chen X, Zheng YS, Xue ZY, Shu C, Yuan WC, Zhang XM. Angew. Chem. Int. Ed. 2011; 50: 7304
    • 8o Chen X, Zheng YS, Shu C, Yuan WC, Liu B, Zhang XM. J. Org. Chem. 2011; 76: 9109
    • 8p Zheng HJ, Chen WB, Wu ZJ, Deng JG, Lin WQ, Yuan WC, Zhang XM. Chem.–Eur. J. 2008; 14: 9864
    • 8q Xue ZY, Jiang Y, Peng XZ, Yuan WC, Zhang XM. Adv. Synth. Catal. 2010; 352: 2132
    • 8r Xue ZY, Jiang Y, Yuan WC, Zhang XM. Eur. J. Org. Chem. 2010; 616
    • 8s Zheng HJ, Deng JG, Lin WQ, Zhang XM. Tetrahedron Lett. 2007; 48: 7934
  • 9 Enantioselective Hydrosilylation of Benzoxazine; General Procedure: Trichlorosilane (51 μL, 0.5 mmol, 2.0 equiv) dissolved in THF (0.15 mL) was added to a stirred solution of 1,4-benzoxazine 2 (0.25 mmol) and catalyst (0.025 mmol) in anhydrous THF (2 mL) at 0 °C. The mixture was stirred at the same temperature for 12 h, then quenched with sat. aq NaHCO3 and extracted with EtOAc. The combined extract was washed with brine and dried over anhydrous Na2SO4 and the solvents were evaporated. Purification by column chromatography (silica gel; hexane–EtOAc) afforded pure product 3. The ee values were determined by using established HPLC techniques with chiral stationary phases
  • 10 3-(Furan-2-yl)-3,4-dihydro-2H-benzo[b][1,4]oxazine (3l): Yield: 90%; light-yellow oil; 87% ee. 1H NMR (300 MHz, CDCl3): δ = 7.39 (d, J = 0.9 Hz, 1 H), 6.84–6.78 (m, 2 H), 6.72–6.65 (m, 2 H), 6.36 (dd, J = 1.8, 3.2 Hz, 1 H), 6.30 (d, J = 3.2 Hz, 1 H), 4.63–4.62 (m, 1 H), 4.43–4.38 (m, 1 H), 4.23 (dd, J = 7.0, 10.6 Hz, 1 H), 4.10 (br s, 1 H). 13C NMR (75 MHz, CDCl3): δ = 152.5, 143.4, 142.2, 132.6, 121.5, 119.2, 116.6, 115.6, 110.4, 106.7, 67.8, 48.3. HPLC (OD-H column; n-hexane–2-propanol, 80:20; flow rate = 1.0 mL/min): t R = 8.08 (minor), 9.12 (major) min; [α]D 20 +32.6 (c = 0.4, CHCl3). HRMS (ESI): m/z [M + H]+ calcd. for C12H11NO2 + H+: 202.0863; found: 202.0865