Arzneimittelforschung 2010; 60(6): 330-335
DOI: 10.1055/s-0031-1296296
Antibiotics · Antimycotics · Antiparasitics · Antiviral Drugs · Chemotherapeutics · Cytostatics
Editio Cantor Verlag Aulendorf (Germany)

In vitro anti-proliferative effects of the willow bark extract STW 33-I

Gabriel Alejandro Bonaterra
1   Centre for Biomedicine and Biomedical Technology Mannheim (CBTM) University of Heidelberg, Mannheim, Germany
4   Anatomy and Cell Biology, Department of Medical Cell Biology, Marburg, Germany
,
Olaf Kelber
2   Scientific Department, Steigerwald Arzneimittelwerk GmbH, Darmstadt Germany
,
Dieter Weiser
2   Scientific Department, Steigerwald Arzneimittelwerk GmbH, Darmstadt Germany
,
Jürgen Metz
3   Anatomy und Cell Biology III, University of Heidelberg, Heidelberg, Germany
,
Ralf Kinscherf
4   Anatomy and Cell Biology, Department of Medical Cell Biology, Marburg, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
02 December 2011 (online)

Abstract

The well-known anti-inflammatory and analgesic effects of the phytopharmacon willow bark extract have been attributed to the content of salicin; however, pharmacological studies have shown that salicin alone, despite being involved in its therapeutic action, cannot fully explain its clinical efficacy. In addition to reducing inflammation and pain, acetylsalicylic acid (ASA, CAS 50-78-2), like other synthetic non-steroidal anti-inflammatory drugs (NSAIDs), has been shown to exert anti-proliferative effects and to induce apoptosis in a variety of cell lines, e. g. colon, stomach, and prostate cancer cells. To investigate the mechanism of action and possible anti-proliferative and pro-apoptotic effects of willow bark, a water extract (STW 33-1) and a polyphenol rich fraction (fraction E) have been tested by using the colon-carcinoma cell line HT-29. Both, STW 33-1 and its fraction E showed significant anti-proliferative and pro-apoptotic effects on HT-29 cancer cells. Related to the salicin content of the willow bark extract, a higher dosage of ASA was needed. Furthermore, compared to ASA and to diclofenac (Diclo, CAS 15307-79-6), the COX-1 and COX-2 mRNA expressions were influenced differently by STW 33-1 and fraction E. ASA and Diclo inhibited both the COX-1 and COX-2 mRNA expressions, whereas STW 33-1 and its fraction E increased the COX-1 mRNA expression.

In addition to the already well-known anti-inflammatory and analgesic effects, willow bark extract has been found to possess anti-proliferative and pro-apoptotic effects similar to NSAIDs. The different influence of willow bark on the COX-1 and COX-2 mRNA expressions in comparison to NSAIDs might be relevant, e. g. for prevention of undesirable side effects such as gastric erosions.

 
  • References

  • 1 Nahrstedt A, Schmidt M, Jäggi R, Metz J, Khayyal MT. Willow bark extract: The contribution of polyphenols to the overall effect. Wien Med Wochenschr. 2007; 157 (13–14) 348-51
  • 2 Fiebich BL, Klin J, Zeller K, Weiser D. Antiinflammatory effects of Salix: Salix extracts as inhibitors of the expression and synthesis of cytokines, matrix-metalloproteases, prostaglandins and COX-2 in LPS-treated primary human monocytes and chrondrocytes. Osteoarthritis Cartilage. 2003; 11: S119-P332
  • 3 Kelber O, Bonaterra GA, Kinscherf R, Weiser D, Metz J. Inhibitorische Effekte von Weidenrindenextrakten auf proinflammatorische Prozesse in LPS-aktivierten Humanmonozyten. Z Rheumatol. 2006; 65 (1) S31
  • 4 Bonaterra GA, Kinscherf R, Kelber O, Weiser D, Metz J. Antiinflammatorische und antiproliferative Wirkung von Iberogast in vitro. Z Gastroenterol. 2008; 46: 1038-9
  • 5 Wuthold K, Germann I, Roos G, Kelber O, Weiser D, Heinle H et al Thin-layer chromatography and multivariate data analysis of willow bark extracts. J Chromatogr Sci. 2004; 42 (6) 306-9
  • 6 Khayyal MT, El-Ghazaly MA, Abdallah DM, Okpanyi SN, Kelber O, Weiser D. Mechanisms involved in the anti-inflammatory effect of a standardized willow bark extract. Arzneimittelforschung. 2005; 55 (11) 677-87
  • 7 Lardos A, Schmidlin CB, Fischer M, Ferlas-Chlodny E, Lo-niewski I, Samochoviec L et al Wirksamkeit und Verträglichkeit eines wässrig ausgezogenen Weidenrindenextrak-tes bei Patienten mit Hüft- und Kniearthrose. Z Phytother. 2004; 25: 275-81
  • 8 Kähkönen MP, Hopia AI, Vuorela HJ, RauhaJPPihlaja K, Kujala TS et al Antioxidant Activity of Plant Extracts Containing Phenolic Compounds. J Agric Food Chem. 1999; 47 (10) 3954-62
  • 9 Mahdi JG, Mahdi AJ, Mahdi AJ, Bowen ID. The historical analysis of aspirin discovery, its relation to the willow tree and antiproliferative and anticancer potential. Cell Prolif. 2006; 39: 147-55
  • 10 Hostanska K, Jürgenliemk G, Abel G, Nahrstedt A, Saller R. Willow bark extract (BNO1455) and its fractions suppress growth and induce apoptosis in human colon and lung cancer cells. Cancer Detect Prev. 2007; 31 (2) 129-39
  • 11 Shiff SJ, Qiao L, Tsai LL, Rigas B. Sulindac sulfide, an aspirin-like compound, inhibits proliferation, causes cell cycle quiescence, and induces apoptosis in HT-29 colon adenocarcinoma cells. J Clin Invest. 1995; 96: 491-503
  • 12 Lazzaroni M, Bianchi Porro G. Gastrointestinal side-effects of traditional non-steroidal anti-inflammatory drugs and new formulations. Aliment Pharmacol Ther. 2004; 20 (2) 48-58
  • 13 Kim JS, Baek SJ, Sali T, Elig TE. The conventional nonsteroidal ant-inflammatory drug sulindac sulfide arrest ovarian cancer cell growth via the expression of NAG-1/MIC-1/GDF-15. Mol Cancer Ther. 2005; 4: 487-93
  • 14 Erickson BA, Longo WE, Panesar N, Mazuski JE, Kaminski DL. The effect of selective cyclooxygenase inhibitors on intestinal epithelial cell mitogenesis. J Surg Res. 1999; 81: 101-7
  • 15 Yamazaki R, Kusunoki N, Matsuzaki T, Hashimoto S, Kawai S. Nonsteroidal anti-inflammatory drugs induce apoptosis in association with activation of peroxisome proliferator-activated receptor in rheumatoid synovial cells. J Pharmacol Exp Ther. 2002; 302: 18-25
  • 16 Rupnarain C, Dlamini Z, Naicker S, Bhoola K. Colon cancer: genomics and apoptotic events. Biol Chem. 2004; 385: 449-64
  • 17 Tegeder I, Pfeilschifter J, Geisslingerl G. Cyclooxygenase-independent actions of cyclooxygenase inhibitors. FASEB J. 2001; 15: 2057-72
  • 18 Fridrich D, Kern M, Pahlke G, Volz N, Will F, Dietrich H et al Apple polyphenols diminish the phosphorylation of the epidermal growth factor receptor in HT29 colon carcinoma cells. Mol Nutr Food Res. 2007; 51: 594-601
  • 19 Idziorek T, Estaquier J, De Bels F, Ameisen J-C. YOPRO-1 permits cytofluorometric analysis of programmed cell death (apoptosis) without interfering with cell viability. J Immunol Methods. 1995; 185: 249-58
  • 20 Deigner HP, Claus R, Bonaterra GA, Gehrke C, Bibak N, Blaess M et al Ceramide induces aSMase expression: implications for oxLDL-induced apoptosis. FASEB J. 2001; 15: 807-14
  • 21 Kinscherf R, Wagner M, Kamencic H, Bonaterra GA, Hou D, Schiele RA et al Characterization of apoptotic macrophages in atheromatous tissue of humans and heritable hyperlipidemic rabbits. Atherosclerosis. 1999; 144: 33-9
  • 22 Ganguly T, Khar A. Induction of apoptosis in a human ery-throleukemic cell line K562 by tylophora alkaloids involves release of cytochrome c and activation of caspase-3. Phyto-medicine. 2002; 9: 288-95
  • 23 Subbegowda R, Frommel TO. Aspirin toxicity for human colonic tumor cells results from necrosis and is accompanied by cell cycle arrest. Cancer Res. 1998; 58: 2772-6
  • 24 Calatayud C, Warner TD, Breese EJ, Mitchell JA. Relationship between endogenous colony stimulating factors and apoptosis in human colon cancer cells: role of cyclo-oxygenase inhibitors. Br J Pharmacol. 2001; 134: 1237-44
  • 25 Elder DJ, Halton DE, Hague A, Paraskeva C. Induction of apoptotic cell death in human colorectal carcinoma cell lines by a cyclooxygenase-2 (COX-2)-selective nonsteroidal anti-innflammatory drug: independence from COX-2 protein expression. Clin Cancer Res. 1997; 3: 1679-83
  • 26 Shiff SJ, Rigas B. Nonsteroidal anti-inflammatory drugs and colorectal cancer: evolving concepts of their chemopreventive actions. Gastroenterology. 1997; 113: 1992-8
  • 27 Chell S, Patsos HA, Qualtrough D, H-Zadeh AM, Hicks DJ, Kaidi A et al Prospects in NSAID-derived chemoprevention of colorectal cancer. Biochem Soc Trans. 2005; 33: 667-71
  • 28 Sample D, Wargovich M, Fischer SM, Inamdar N, Schwartz P, Wang X et al A dose-finding study of aspirin for chemoprevention utilizing rectal mucosal prostaglandin E(2) levels as a biomarker. Cancer Epidemiol Biomarkers Prev. 2002; 11: 275-9
  • 29 Hanif R, Pittas A, Feng Y, Koutsos MI, Qiao L, Staiano-Coico L et al Effects of nonsteroidal anti-inflammatory drugs on proliferation and on induction of apoptosis in colon cancer cells by a prostaglandin- independent pathway. Biochem Pharmacol. 1996; 52: 237-45
  • 30 Kuntz S, Wenzel U, Daniel H. Comparative analysis of the effects of flavonoids on proliferation, cytotoxicity, and apoptosis in human colon cancer cell lines. Eur J Nutr. 1999; 38: 133-42
  • 31 Hotz-Behofsits CM, Walley MJ, Simpson R, Bjamason IT. COX-1, COX-2 and the topical effect in NSAID-induced enteropathy. Inflammopharmacology. 2003; 11 (4–6) 363-70
  • 32 Sales KJ, Katz AA, Howard B, Soeters RP, Millar RP, Jabbour HN. Cyclooxygenase-1 is up-regulated in cervical carcinomas: autocrine/paracrine regulation of cyclooxygenase-2, prostaglandin E receptors, and angiogenic factors by cyclooxygenase-1. Cancer Res. 2002; 62: 424-32
  • 33 Parrentti L, Perretti M. Advances in the pathophysiology of constitutive and inducible cyclooxygenases: two enzymes in the spotlight. Biochem Pharmacol. 2003; 65 (2) 153-9
  • 34 Church RD, Yu J, Fleshman JW, Shannon WD, Govindan R, McLeod HL. RNA profiling of cyclooxygenases 1 and 2 in colorectal cancer. Br J Cancer. 2004; 91 (6) 1015-8
  • 35 Zidar N, Odar K, Glavač D, Jerše M, Zupanc T, Stajer D. Cyclooxygenase in normal human tissues - is COX-1 really a constitutive isoform, and COX-2 an inducible isoform?. J Cell Mol Med. 2008; 13 (9b) 3753-63 Epub 2008 Jul 24.
  • 36 Li Q, Withoff S, Verma IM. Inflammation-associated cancer: NF-kB is the lynchpin. Trends Immunol. 2005; 26: 318-25