Pneumologie 2012; 66(05): 283-289
DOI: 10.1055/s-0032-1306767
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Lungenfunktionsdiagnostik der kleinen Atemwege

Lung Function Diagnostics for the Small Airways
K. Husemann
1   Klinik Schillerhöhe, Zentrum für Pneumologie und Thoraxchirurgie, Robert-Bosch-Krankenhaus GmbH, Gerlingen (Chefarzt der Abteilung für Pneumologie: Prof. Dr. M. Kohlhäufl)
,
P. Haidl*
2   Fachkrankenhaus Kloster Grafschaft GmbH, Abteilung Pneumologie II, Schmallenberg
,
C. Kroegel*
3   Medizinische Klinik I, Abt. Pneumologie & Allergologie, Friedrich-Schiller-Universität, Jena
,
T. Voshaar*
4   Medizinische Klinik III, Schwerpunkt Pneumologie, Allergologie, Zentrum für Schlaf- und Beatmungsmedizin, Moers
,
M. Kohlhäufl*
1   Klinik Schillerhöhe, Zentrum für Pneumologie und Thoraxchirurgie, Robert-Bosch-Krankenhaus GmbH, Gerlingen (Chefarzt der Abteilung für Pneumologie: Prof. Dr. M. Kohlhäufl)
› Author Affiliations
Further Information

Publication History

eingereicht 15 December 2011

akzeptiert nach Revision 10 February 2012

Publication Date:
04 April 2012 (online)

Zusammenfassung

Die Beteiligung der kleinen Atemwege an der Pathogenese obstruktiver Atemwegserkrankungen ist in den letzten Jahren zunehmend ins Zentrum des Interesses gerückt. Insbesondere bei schwerem und unkontrolliertem Asthma bronchiale scheint die Entzündung in den kleinen Atemwegen im Mittelpunkt zu stehen und stellt eine wichtige Targetregion für die Inhalationstherapie dar. Bislang gibt es keinen Goldstandard zur differenzierten funktionellen Erfassung der kleinen Atemwege. Verschiedene invasive und nichtinvasive Methoden wurden beschrieben. Spirometrie und Bodyplethysmografie können mit Parametern wie Verhältnis der forcierten zur langsam gemessenen Vitalkapazität (FVC/SVC) oder dem Residualvolumen (RV) nur indirekte Hinweise auf ein „air trapping“ im Rahmen einer „small airway disease“ geben. Als sensitivere Verfahren stehen die Impulsoszillometrie, Stickstoffauswaschtests und die Analyse von Stickstoffmonoxid im Exhalat zur Verfügung. Die Impulsoszillometrie separiert zentrale und periphere obstruktive Ventilationsstörungen. Mit dem Stickstoffauswaschtest werden „air trapping“ und inhomogene Ventilation in den kleinen Atemwegen erfasst. Die Berechnung der alveolären NO-Konzentration im Exhalat gilt als Marker für eine periphere Entzündung. In welcher Kombination die genannten Methoden zur Diagnostik und Beurteilung des Therapieansprechens von Patienten mit einer „small airway disease“ in der Praxis am besten eingesetzt werden, müssen zukünftige Studien zeigen.

Abstract

In the recent years growing interest has focused on the involvement of the distal airways (internal diameter < 2 mm) in obstructive lung diseases and other pulmonary conditions. Inflammation in the small airways seems to play a major role in severe and uncontrolled asthma as a major determinant of airflow obstruction. Thus, small airways represent an important target for inhalation therapy. Currently there is no accepted single lung function parameter to detect small airway dysfunction. Various invasive and non-invasive techniques have been described. In future, non-invasive lung function testing will gain more importance. Using spirometry or body plethysmography, lung function parameters such as the ratio of forced vital capacity to slow vital capacity (FVC/SVC) and the residual volume (RV) can provide information about air trapping in small airway disease. Recent data show that techniques such as impulse oscillometry, nitrogen washout testing and analysis of exhaled nitric oxide are promising tools to assess involvement of the small airways. Impulse oscillometry is a sensitive method to calculate peripheral airway resistance, nitrogen washout allows one to detect air trapping and inhomogeneous ventilation in the distal lung, and the alveolar nitric oxide concentration represents a marker of peripheral inflammation. Further studies are needed to validate these functional tests or their combination for diagnosis and assessment of treatment response in pulmonary diseases involving small airways.

* Für die DESA
DESA (Deutsche Expertengruppe Small Airways) sind Dr. Peter Haidl, Prof. Dr. Martin Kohlhäufl, Dr. Dr. Joachim Körner, Prof. Dr. Dr. Claus Kroegel, Manuela Kulle, Dr. Detlef Nachtigall, Dr. Astrid Riebeling, Prof. Dr. Andreas Schmitt, Prof. Dr. Thomas Voshaar.


 
  • Literatur

  • 1 Kraft M. The distal airways: are they important in asthma?. Eur Respir J 1999; 14: 1403-1417
  • 2 Shaw RJ, Djukanovic R et al. The role of small airways in lung disease. Respir Med 2002; 96: 67-80
  • 3 Sturton G, Persson C, Barnes PJ. Small airways: an important but neglected target in the treatment of obstructive airway diseases. Trends Pharmacol Sci 2008; 29: 340-345
  • 4 Contoli M, Bousquet J, Fabbri LM et al. The small airways and distal lung compartment in asthma and COPD: a time for reappraisal. Allergy 2010; 65: 141-151
  • 5 Burgel PR, de Blic J, Chanez P et al. Update on the roles of distal airways in asthma. Eur Respir Rev 2009; 18: 80-95
  • 6 Cohen J, Douma WR, ten Hacken NH et al. Ciclesonide improves measures of small airway involvement in asthma. Eur Respir J 2008; 31: 1213-1220
  • 7 Woolcock AJ. Effect of drugs on small airways. Am J Respir Crit Care Med 1998; 157: 203-207
  • 8 Weibel ER. Morphometry of the Human Lung. New York: Academic; 1963
  • 9 Wagner EM, Bleecker ER, Permutt S et al. Direct assessment of small airways reactivity in human subjects. Am J Respir Crit Care Med 1998; 157: 447-452
  • 10 Balzar S, Wenzel SE, Chu HW. Transbronchial biopsy as a tool to evaluate small airways in asthma. Eur Respir J 2002; 20: 254-259
  • 11 Zeidler MR, Kleerup EC, Goldin JG et al. Montelukast improves regional air-trapping due to small airways obstruction in asthma. Eur Respir J 2006; 27: 307-315
  • 12 Hogg JC, Macklem PT, Thurlbeck WM. Site and nature of airway obstruction in chronic obstructive lung disease. N Engl J Med 1968; 278: 1355-1360
  • 13 Yanai M, Sekizawa K, Ohrui T et al. Site of airway obstruction in pulmonary disease: direct measurement of intrabronchial pressure. J Appl Physiol 1992; 72: 1016-1023
  • 14 Macklem PT, Mead J. Resistance of central and peripheral airways measured by a retrograde catheter. J Appl Physiol 1967; 22: 395-401
  • 15 Virchow JC. Asthma. A small Airway Disease: Concepts and Evidence. Pneumologie 2009; 63 (Suppl. 2): 96-101
  • 16 Macklem PT. The physiology of small airways. Am J Respir Crit Care Med 1998; 157: 181-183
  • 17 Leuallen EC, Fowler WS. Maximal midexpiratory flow. Am Rev Tuberc 1955; 72: 783-800
  • 18 McFadden Jr ER, Linden DA. A reduction in maximum mid-expiratory flow rate. A spirographic manifestation of small airway disease. Am J Med 1972; 52: 725-737
  • 19 Cirillo I, Klersy C, Marseglia GL et al. Role of FEF25%-75% as a predictor of bronchial hyperreactivity in allergic patients. Ann Allergy Asthma Immunol 2006; 96: 692-700
  • 20 Marseglia GL, Cirillo I, Vissaccaro A et al. Role of forced expiratory flow at 25-75% as an early marker of small airways impairment in subjects with allergic rhinitis. Allergy Asthma Proc 2007; 28: 74-78
  • 21 Hauber HP, Gotfried M, Newman K et al. Effect of HFA-flunisolide on peripheral lung inflammation in asthma. J Allergy Clin Immunol 2003; 112: 58-63
  • 22 Verbanck S, Schuermans D, Paiva M et al. The functional benefit of anti-inflammatory aerosols in the lung periphery. J Allergy Clin Immunol 2006; 118: 340-346
  • 23 Sutherland ER, Martin RJ, Bowler RP et al. Physiologic correlates of distal lung inflammation in asthma. J Allergy Clin Immunol 2004; 113: 1046-1050
  • 24 Hansen JE, Sun XG, Wasserman K. Discriminating measures and normal values for expiratory obstruction. Chest 2006; 129: 369-377
  • 25 Chan ED, Irvin CG. The detection of collapsible airways contributing to airflow limitation. Chest 1995; 107: 856-859
  • 26 Chhabra SK. Forced vital capacity, slow vital capacity, or inspiratory vital capacity: which is the best measure of vital capacity?. J Asthma 1998; 35: 361-365
  • 27 Cohen J, Postma DS, Vink-Klooster K et al. FVC to slow inspiratory vital capacity ratio: a potential marker for small airways obstruction. Chest 2007; 132: 1198-1203
  • 28 Wenzel SE, Schwartz LB, Langmack EL et al. Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. Am J Respir Crit Care Med 1999; 160: 1001-1008
  • 29 Gibson GJ. Pulmonary hyperinflation a clinical overview. Eur Respir J 1996; 9: 2640-2649
  • 30 Pellegrino R, Brusasco V. On the causes of lung hyperinflation during bronchoconstriction. Eur Respir J 1997; 10: 468-475
  • 31 Sorkness RL, Bleecker ER, Busse WW et al. Lung function in adults with stable but severe asthma: airtrapping and incomplete reversal of obstruction with bronchodilation. J Appl Physiol 2008; 104: 394-403
  • 32 Kraft M, Pak J, Kaminsky D et al. Distal lung dysfunction at night in nocturnal asthma. Am J Respir Crit Care Med 2001; 163: 1551-1556
  • 33 Kraft M, Cairns CB, Ellison MC et al. Improvements in distal lung function correlate with asthma symptoms after treatment with oral montelukast. Chest 2006; 130: 1726-1732
  • 34 Robinson PD, Goldman MD, Gustafsson PM. Inert gas washout: theoretical background and clinical utility in respiratory disease. Respiration 2009; 78: 339-355
  • 35 Ruppel GL. Manual of Pulmonary Function Testing. 9th. ed. Mosby; 2008
  • 36 Bourdin A, Paganin F, Préfaut C et al. Nitrogen washout slope in poorly controlled asthma. Allergy 2006; 61: 85-89
  • 37 in’t Veen JC, Beekman AJ, Bel EH et al. Recurrent exacerbations in severe asthma are associated with enhanced airway closure during stable episodes. Am J Respir Crit Care Med 2000; 161: 1902-1906
  • 38 Thongngarm T, Silkoff PE, Kossack WS et al. Hydrofluoroalkane-134A beclomethasone or chlorofluoro-carbon fluticasone: effect on small airways in poorly controlled asthma. J Asthma 2005; 42: 257-263
  • 39 Scichilone N, Battaglia S, Sorino C et al. Effects of extra-fine inhaled beclomethasone/formoterol on both large and small airways in asthma. Allergy 2010; 65: 897-902
  • 40 Crawford AB, Makowska M, Paiva M et al. Convection- and diffusion-dependent ventilation maldistribution in normal subjects. J Appl Physiol 1985; 59: 838-846
  • 41 Crawford AB, Makowska M, Kelly S et al. Effect of breath holding on ventilation maldistribution during tidal breathing in normal subjects. J Appl Physiol 1986; 61: 2108-2115
  • 42 Crawford AB, Makowska M et al. Effect of bronchomotor tone on static mechanical properties of lung and ventilation distribution. J Appl Physiol 1987; 63: 2278-2285
  • 43 Crawford AB, Cotton DJ, Paiva M et al. Effect of lung volume on ventilation distribution. J Appl Physiol 1989; 66: 2502-2510
  • 44 Verbanck S, Schuermans D, Van Muylem A et al. Ventilation distribution during histamine provocation. J Appl Physiol 1997; 83: 1907-1916
  • 45 Verbanck S, Schuermans D, Paiva M et al. Nonreversible conductive airway ventilation heterogeneity in mild asthma. J Appl Physiol 2003; 94: 1380-1386
  • 46 Verbanck S, Schuermans D, Meysman M et al. Noninvasive assessment of airway alterations in smokers: the small airways revisited. Am J Respir Crit Care Med 2004; 170: 414-419
  • 47 King GG, Downie SR, Verbanck S et al. Effects of methacholine on small airway function measured by forced oscillation technique and multiple breath nitrogen washout in normal subjects. Respir Physiol Neurobiol 2005; 148: 165-177
  • 48 Verbanck S, Schuermans D, Noppen M et al. Evidence of acinar airway involvement in asthma. Am J Respir Crit Care Med 1999; 159: 1545-1550
  • 49 Winkler J, Hagert-Winkler A, Wirtz H et al. Die moderne Impulsoszillometrie im Spektrum lungenfunktioneller Messmethoden. Pneumologie 2009; 63: 461-469
  • 50 Park JW, Lee YW, Jung YH et al. Impulse oscillometry for estimation of airway obstruction and bronchodilation in adults with mild obstructive asthma. Ann Allergy Asthma Immunol 2007; 98: 546-552
  • 51 Al-Mutairi SS, Sharma PN, Al-Alawi A et al. Impulse oscillometry: an alternative modality to the conventional pulmonary function test to categorise obstructive pulmonary disorders. Clin Exp Med 2007; 7: 56-64
  • 52 Smith HJ, Vogel J et al. Impuls-Oszillometrie in der Früherkennung obstruktiver Atemwegserkrankungen. Sonderausgabe IOS. Höchberg: Firma Jaeger; 1997
  • 53 Winkler J, Hagert-Winkler A, Wirtz H et al. Modern impulse oscillometry in the spectrum of pulmonary function testing methods. Pneumologie 2009; 63: 461-469
  • 54 Goldman MD, Saadeh C, Ross D. Clinical applications of forced oscillation to assess peripheral airway function. Respir Physiol Neurobiol 2005; 148: 179-194
  • 55 Ross DJ, Goldman MD et al. Multi-frequency forced oscillation technique [FOT] for assessment of lung allograft function: a pilot Study. J Heart Lung Transplant 2004; 23: 131
  • 56 Kohlhäufl M, Brand P, Scheuch G et al. Impulse oscillometry in healthy nonsmokers and asymptomatic smokers: effects of bronchial challenge with methacholine. J Aerosol Med 2001; 14: 1-12
  • 57 Cavalcanti JV, Lopes AJ, Jansen JM et al. Detection of changes in respiratory mechanics due to increasing degrees of airway obstruction in asthma by the forced oscillation technique. Respir Med 2006; 100: 2207-2219
  • 58 Delacourt C, Lorino H, Herve-Guillot M et al. Use of the forced oscillation technique to assess airway obstruction and reversibility in children. Am J Respir Crit Care Med 2000; 161: 730-736
  • 59 Kaminsky DA, Irvin CG, Lundblad L et al. Oscillation mechanics of the human lung periphery in asthma. J Appl Physiol 2004; 97: 1849-1858
  • 60 Yamaguchi M, Niimi A, Ueda T et al. Effect of inhaled corticosteroids on small airways in asthma: investigation using impulse oscillometry. Pulm Pharmacol Ther 2009; 22: 326-332
  • 61 Smith AD, Cowan JO, Brassett KP et al. Use of exhaled nitric oxide measurements to guide treatment in chronic asthma. N Engl J Med 2005; 352: 2163-2173
  • 62 Zacharasiewicz A, Wilson N, Lex C et al. Clinical use of noninvasive measurements of airway inflammation in steroid reduction in children. Am J Respir Crit Care Med 2005; 171: 1077-1082
  • 63 Michils A, Baldassarre S, Van Muylem A. Exhaled nitric oxide and asthma control: a longitudinal study in unselected patients. Eur Respir J 2008; 31: 539-546
  • 64 Dweik RA, Laskowski D, Abu-Soud HM et al. Nitric oxide synthesis in the lung. Regulation by oxygen through a kinetic mechanism. J Clin Invest 1998; 101: 660-666
  • 65 Tsoukias NM, George SC. A two-compartment model of pulmonary nitric oxide exchange dynamics. J Appl Physiol 1998; 85: 653-666
  • 66 George SC, Hogman M, Permutt S et al. Modeling pulmonary nitric oxide exchange. J Appl Physiol 2004; 96: 831-839
  • 67 Mahut B, Louis B, Zerah-Lanvner F et al. Validity criteria and comparison of analytical methods of flow-independent exhaled NO parameters. Respir Physiol Neurobiol 2006; 153: 148-156
  • 68 Berry M, Hargadon B, Morgan A et al. Alveolar nitric oxide in adults with asthma: evidence of distal lung inflammation in refractory asthma. Eur Respir J 2005; 25: 986-991
  • 69 Brindicci C, Ito K, Resta O et al. Exhaled nitric oxide from lung periphery is increased in COPD. Eur Respir J 2005; 26: 52-59
  • 70 van Veen IH, Sterk PJ, Schot R et al. Alveolar nitric oxide versus measures of peripheral airway dysfunction in severe asthma. Eur Respir J 2006; 27: 951-956
  • 71 Lehtimäki L, Kankaanranta H, Saarelainen S et al. Peripheral inflammation in patients with asthmatic symptoms but normal lung function. J Asthma 2005; 42: 605-609
  • 72 Battaglia S, den Hertog H, Timmers MC et al. Small airways function and molecular markers in exhaled air in mild asthma. Thorax 2005; 60: 639-644