Synlett 2012; 23(16): 2333-2336
DOI: 10.1055/s-0032-1317173
letter
© Georg Thieme Verlag Stuttgart · New York

Triphenylphosphine as a Ligand for the Pd-Catalyzed Amination of Un­activated Aryl Chlorides with Anilines Promoted by Salicylaldimine

Tao-Ping Liu
School of Chemical and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. of China   Fax: +86(21)64253519   Email: xctao@ecust.edu.cn
,
Qiang Cheng
School of Chemical and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. of China   Fax: +86(21)64253519   Email: xctao@ecust.edu.cn
,
Wen-Jing Song
School of Chemical and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. of China   Fax: +86(21)64253519   Email: xctao@ecust.edu.cn
,
Liang-Zhen Cai*
School of Chemical and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. of China   Fax: +86(21)64253519   Email: xctao@ecust.edu.cn
,
Xiao-Chun Tao*
School of Chemical and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. of China   Fax: +86(21)64253519   Email: xctao@ecust.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 08 June 2012

Accepted after revision: 07 August 2012

Publication Date:
14 September 2012 (online)


Abstract

An efficient and selective amination of unactivated aryl chlorides with anilines catalyzed by mixed ligand Pd catalytic system of Ph3P–salicylaldimine has been developed for the preparation of diarylamines. The benzyne mechanism was ruled out based on experimental results.

Supporting Information

 
  • References and Notes

    • 1a Bikker JA, Brooijmans N, Wissner A, Mansour TS. J. Med. Chem. 2009; 52: 1493
    • 1b Quintas-Cardama A, Kantarjian H, Cortes J. Nat. Rev. Drug Discovery 2007; 6: 834
    • 1c Huang T.-H, Lin JT, Chen L.-Y, Lin Y.-T, Wu C.-C. Adv. Mater. 2006; 18: 602
    • 1d Xia Z.-Y, Su J.-H, Fan H.-H, Chen K.-W, Tian H, Chen C.-H. J. Phys. Chem. C 2010; 114: 11602
    • 2a Kunz K, Scholz U, Ganzer D. Synlett 2003; 2428
    • 2b Ley SV, Thomas AW. Angew. Chem. Int. Ed. 2004; 43: 1043
    • 2c Salvatore RN, Yoon CH, Jung KW. Tetrahedron 2001; 57: 7785
    • 2d Sawyer JS, Schmittling EA, Palkowitz JA, Smith WJ. III. J. Org. Chem. 1998; 63: 6338
    • 2e Maiti D, Fors BP, Henderson JL, Nakamura Y, Buchwald SL. Chem. Sci. 2011; 2: 57
    • 2f Surry DS, Buchwald SL. Chem. Sci. 2011; 2: 27
    • 3a Guram AS, Rennels RA, Buchwald SL. Angew. Chem., Int. Ed. Engl. 1995; 34: 1348
    • 3b Louie J, Hartwig JF. Tetrahedron Lett. 1995; 36: 3609
    • 3c Wolfe JP, Wagaw S, Buchwald SL. J. Am. Chem. Soc. 1996; 118: 7215
    • 3d Driver MS, Hartwig JF. J. Am. Chem. Soc. 1996; 118: 7217
    • 3e Wolfe JP, Buchwald SL. J. Org. Chem. 2000; 65: 1144
    • 4a Wolfe JP, Wagaw S, Buchwald SL. J. Am. Chem. Soc. 1996; 118: 7215
    • 4b Driver MS, Hartwig JF. J. Am. Chem. Soc. 1996; 118: 7217
    • 4c Wolfe JP, Buchwald SL. J. Org. Chem. 2000; 65: 1144
  • 5 Fu GC. Acc. Chem. Res. 2008; 41: 1555
    • 6a Shen Q, Ogata T, Hartwig JF. J. Am. Chem. Soc. 2008; 130: 6586
    • 6b Nishiyama M, Yamamoto T, Koie Y. Tetrahedron Lett. 1998; 39: 617
    • 6c Fleckenstein CA, Plenio H. Chem. Soc. Rev. 2010; 39: 694
    • 7a Fu J, Snieckus V. Tetrahedron Lett. 1990; 31: 1665
    • 7b Miyaura N, Yanagi T, Suzuki A. Synth. Commun. 1981; 11: 513
    • 7c Echavarren AM, Stille JK. J. Am. Chem. Soc. 1987; 109: 5478
    • 7d Gómez-Bengoa E, Echavarren AM. J. Org. Chem. 1991; 56: 3497
    • 7e Widdowson DA, Zhang Y.-Z. Tetrahedron 1986; 42: 2111
    • 7f Negishi E, Luo F.-T, Frisbee R, Matsushita H. Heterocycles 1982; 18: 117
    • 7g Roth GP, Fuller CE. J. Org. Chem. 1991; 56: 3493
  • 8 Boger DL, Panek JS. Tetrahedron Lett. 1984; 25: 3175
    • 9a Ewald AH, Sinn E. Inorg. Chem. 1967; 6: 40
    • 9b DuBois DL, Eaton GR, Eaton SS. J. Am. Chem. Soc. 1978; 100: 2686
    • 9c Ciampolini M, Maggio F, Cavasino FP. Inorg. Chem. 1964; 3: 1188
    • 9d Butcher Ray J, Overman John W, Sinn E. J. Am. Chem. Soc. 1980; 102: 3276
    • 9e Li X, Yu F, Sun H, Huang L, Hou H. Eur. J. Inorg. Chem. 2006; 21: 4362
    • 10a Ittel SD, Johnson LK, Brookhart M. Chem. Rev. 2000; 100: 1169
    • 10b Tian J, Hustad P, Coates G. J. Am. Chem. Soc. 2001; 123: 5134
    • 10c Matsui S, Fujita T. Catal. Today 2001; 66: 63
    • 10d Makio H. Kashiwa N., Fujita T. 2002; 344: 477
    • 10e Suzuki Y, Terao H, Fujita T. Bull. Chem. Soc. Jpn. 2003; 76: 1493
    • 11a Grushin VV, Alper H. Chem. Rev. 1994; 94: 1047
    • 11b Abaev VT, Serdyuk OV. Russ. Chem. Rev. 2008; 77: 177
  • 12 Sareen V, Gupta U, Khatri V, Chugh S, Shinde D, Sareen S. Heterocycl. Lett. 2011; 1: 25
  • 13 General Procedure for the Amination of Aryl Chlorides with Anilines In a Schlenk tube with a magnetic bar, L6 (9.8 mg, 4 mol%), Pd(PPh3)2Cl2 (14.5 mg, 2 mol%), t-BuONa (280 mg, 3 mmol), aryl choride (1.5 mmol), and aniline (1 mmol) in o-xylene (8 mL) were placed under nitrogen. The resulting mixture was stirred at reflux for 12 h. The solvent was evaporated in vacuo, and the residue was purified by flash column chromatography (PE–EtOAc) to give the products 3aq
  • 14 Diphenylamine (3a) Yield 95%; white solid; mp 49–50 °C. 1H NMR (400 MHz, CDCl3): δ = 5.43 (br, 1 H), 6.82 (t, J = 7.4 Hz, 2 H), 6.96–6.98 (m, 4 H), 7.20 (m, 4 H)
  • 15 2,2′,4,6,6′-Pentamethyldiphenylamine (3q) Yield 88%; white solid; mp 82–84 °C. 1H NMR (400 MHz, CDCl3): δ = 2.00 (s, 12 H), 2.25 (s, 3 H), 4.71 (br, 1 H), 6.78–6.82 (m, 3 H), 6.95 (s, 1 H), 6.98 (s, 1 H)

    • For the amination reaction of aryl chlorides though the benzyne mechanism, see:
    • 16a Beller M, Riermeier TH, Reisinger C.-P, Herrmann WA. Tetrahedron Lett. 1997; 38: 2073
    • 16b Beller M, Breindl C, Riermeier TH, Tillack A. J. Org. Chem. 2001; 66: 1403
    • 16c Beller M, Breindl C, Riermeier TH, Eichberger M, Trauthwein H. Angew. Chem. Int. Ed. 1998; 37: 3389
  • 17 Bowes EG, Lee GM, Vogels CM, Decken A, Westcott SA. Inorg. Chim. Acta 2011; 377: 84