Synlett 2013; 24(7): 865-867
DOI: 10.1055/s-0032-1318487
letter
© Georg Thieme Verlag Stuttgart · New York

Triflic Acid Mediated Fries Rearrangement of 3-Dienyl-2-azetidinones: Facile Synthesis of 3-(But-2-enylidene)quinolin-4(3H)-ones

Amit Anand
Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India   Fax: +91(183)225881920   Email: vipan_org@yahoo.com
,
Vishu Mehra
Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India   Fax: +91(183)225881920   Email: vipan_org@yahoo.com
,
Vipan Kumar*
Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India   Fax: +91(183)225881920   Email: vipan_org@yahoo.com
› Author Affiliations
Further Information

Publication History

Received: 24 January 2013

Accepted after revision: 28 February 2013

Publication Date:
08 March 2013 (online)


Abstract

β-Lactam-synthon-interceded synthesis of 3-(but-2-enylidene)quinolin-4(3H)-ones has been described via triflic acid mediated Fries rearrangement of 3-butadienyl-2-azetidinones. The described protocol provides a direct access to C-3 functionalized quinolin-4(3H)-ones and does not suffer from the disadvantages ­associated with conventional routes.

 
  • References and Notes

  • 1 Emami S, Foroumadi A, Samadi N, Faramarzi MA, Rajabalian S. Arch. Pharm. (Weinheim, Ger.) 2009; 342: 405
  • 2 Bridges AJ, Moos WH, Szotek DL, Trivedi BK, Bristol JA, Heffner TG, Bruns RF, Downs DA. J. Med. Chem. 1987; 30: 1711
  • 3 Jarak I, Kralj M, Piantanida I, Šuman L, Zinić M, Pavelić K, Karminski-Zamola G. Bioorg. Med. Chem. 2006; 14: 2859
  • 4 Ogata M, Matsumoto H, Hirose K. J. Med. Chem. 1977; 20: 776
  • 5 Cross RM, Monastyrskyi A, Mutka TS, Burrows JN, Kyle DE, Manetsch R. J. Med. Chem. 2010; 53: 7076
    • 6a Sato M, Motomura T, Aramaki H, Matsuda T, Yamashita M, Ito Y, Kawakami H, Matsuzaki Y, Watanabe W, Yamataka K, Ikeda S, Kodama E, Matsuoka M, Shinkai H. J. Med. Chem. 2006; 49: 1506
    • 6b Dayam R, Sanchez T, Neamati N. J. Med. Chem. 2005; 48: 8009
    • 6c Dayam R, Al-Mawsawi LQ, Zawahir Z, Witvrouw M, Debyser Z, Neamati N. J. Med. Chem. 2008; 51: 1136
  • 7 Pallaoro M, Lahm A, Biasiol G, Brunetti M, Nardella C, Orsatti L, Bonelli F, Orrù S, Narjes F, Steinkühler C. J. Virol. 2001; 75: 9939
  • 8 Kumar DV, Rai R, Brameld KA, Somoza JR, Rajagopalan R, Janc JW, Xia YM, Ton TL, Shaghafi MB, Hu H, Lehoux I, To N, Young WB, Green MJ. Bioorg. Med. Chem. Lett. 2011; 21: 82
    • 9a Drlica K, Zhao X. Microbiol. Mol. Biol. Rev. 1997; 61: 377
    • 9b Mitscher LA. Chem. Rev. 2005; 105: 559
  • 10 Liu H.-B, Tang H, Yang D, Deng Q, Yuan L.-J, Ji Q.-G. Bioorg. Med. Chem. Lett. 2012; 22: 5845
    • 11a Nitiss JL. Nat. Rev. Cancer. 2009; 9: 338
    • 11b Baldwin EL, Osheroff N. Curr. Med. Chem. 2005; 5: 363
    • 11c McClendon AK, Osheroff N. Mutat. Res. 2007; 623: 83
    • 12a Drygin D, Rice G, Grummt I. Annu. Rev. Pharmacol. Toxicol. 2010; 50: 131
    • 12b Drygin D, Lin A, Bliesath J, Ho CB, O’Brien S, Proffitt C, Omori M, Haddach M, Schwaebe M, Siddiqui-Jain A, Streiner N, Quin JE, Sanij E, Bywater MJ, Hannan RD, Ryckman D, Anderes K, Rice WG. Cancer Res. 2010; 70: 10288
    • 12c Drygin D, Siddiqui-Jain A, O’Brien S, Schwaebe M, Lin A, Bliesath J, Ho CB, Proffitt C, Trent K, Whitten JP, Lim JK. C, Von Hoff D, Anderes KW. G. Cancer Res. 2009; 69: 7653
  • 13 Boteva AA, Krasnykh OP. Chem. Heterocycl. Compd. 2009; 45: 757 ; Khim. Geterotsikl. Soedin. 2009, 963
    • 14a Beifuss U, Feder G, Bes T, Uson I. Synlett 1998; 649
    • 14b Chen W, Egar AL, Hursthouse MB, Malik KM. A, Mathews JE, Roberts SM. Tetrahedron Lett. 1998; 39: 8495
    • 15a Higuchi RI, Edwards JP, Caferro TR, Ringgenberg JD, Kong JW, Hamann LG, Arienti L, Marschke KB, Marshke KB, Davis RL, Farmer LJ, Jones TK. Bioorg. Med. Chem. Lett. 1999; 9: 1335
    • 15b Lin Z, Tegley CM, Marschke KB, Jones TK. Bioorg. Med. Chem. Lett. 1999; 9: 1009
  • 16 Kumar V, Mahajan A, Chibale K. Bioorg. Med. Chem. 2009; 17: 2236
    • 17a Nieman JA, Ennis MD. Org. Lett. 2000; 2: 1395
    • 17b Nieman JA, Ennis MD. J. Org. Chem. 2001; 61: 2175
  • 18 Schofield K, Swain T. J. Chem. Soc. 1950; 384
  • 19 Wendeborn S. Synlett 2000; 45
  • 20 Anderson KW, Tepe J. Org. Lett. 2002; 4: 459
  • 21 Anand A, Singh P, Mehra V, Amandeep Kumar V, Mahajan MP. Tetrahedron Lett. 2012; 53: 2417
    • 22a Mehra V, Singh P, Kumar V. Tetrahedron 2012; 68: 8395
    • 22b Raj R, Bhargava G, Hendricks DT, Handa S, Slaughter LM, Kumar V. Eur. J. Med. Chem. 2012; 513
    • 22c Singh P, Mehra V, Anand A, Kumar V, Mahajan MP. Tetrahedron Lett. 2011; 52: 5060
    • 22d Raj R, Mehra V, Singh P, Kumar V, Bhargava G, Mahajan MP, Handa S, Slaughter L. Eur. J. Org. Chem. 2011; 2497
    • 22e Singh P, Bhargava G, Kumar V, Mahajan MP. Tetrahedron Lett. 2010; 51: 4272
    • 22f Mehra, V.; Kumar, V. unpublished results.
    • 23a Alcaide B, Almendros P, Aragoncillo C. Chem. Rev. 2007; 107: 4437
    • 23b Alcaide B, Almendros P. Curr. Med. Chem. 2004; 11: 1921
    • 23c Palomo C, Aizpurua JM, Ganboa I, Oiardide M. Curr. Med. Chem. 2004; 11: 1837
    • 23d Kamath A, Ojima I. Tetrahedron 2012; 68: 10640
  • 24 Sharma AK, Mazumdar SN, Mahajan MP. J. Org. Chem. 1996; 61: 5506
  • 25 Typical Procedure for the Synthesis of Quinolin-4(3H)-one 2 The synthesis of quinolin-4(3H)-one was realized by slow addition of TfOH (10 mmol) to an ice-cold solution of trans-3-butadienyl-2-azetidinones 1 (30 mmol) in DCE (20 mL). After completion of the reaction (monitored by TLC), the reaction mixture was quenched with ice-cold H2O and extracted into DCE. The removal of solvent under reduced pressure resulted in the isolation of a crude product, which was purified through silica gel column chromatography resulting in the formation of compound 2 in good yields. 3-(But-2-enylidene)-2-phenylquinolin-4(3H)-one (2a) Pale yellow solid; mp 92–93 °C. IR (KBr): 1627, 1684 cm–1. 1H NMR (300 MHz, CDCl3): δ = 1.86 (d, J = 5.4 Hz, 3 H, CH3), 5.88 (d, 1 H, J = 15.0 Hz, H2), 6.17 (m, 2 H, H1 and H3), 7.10 (t, 1 H, J = 7.5 Hz, ArH), 7.26–7.36 (m, 6 H, ArH), 7.54–7.57 (m, 2 H, ArH). 13C NMR (75 MHz, CDCl3): δ = 19.5, 127.0, 127.1, 127.7, 128.2, 128.8, 129.2, 130.2, 130.4, 131.0, 131.2, 135.8, 138.9, 143.1, 153.5, 164.8, 177.4. ESI-MS: m/z = 273 [M]+. Anal. Calcd for C19H15NO: C, 83.49; H, 5.53; N, 5.12. Found: C, 83.57; H, 5.65; N, 5.02. 3-(But-2-enylidene)-2-p-tolylquinolin-4(3H)-one (2b) Pale yellow solid; mp 96–97 °C. IR (KBr): 1627, 1685 cm–1. 1H NMR (300 MHz, CDCl3): δ = 1.88 (d, J = 5.4 Hz, 3 H, CH3), 2.25 (s, 3 H, CH3C6H4), 5.86 (d, 1 H, J = 15.0 Hz, H2), 6.16 (m, 2 H, H1 and H3), 7.12 (t, 1 H, J = 7.5 Hz, ArH), 7.30–7.42 (m, 5 H, ArH), 7.57–7.61 (m, 2 H, ArH). 13C NMR (75 MHz, CDCl3): δ = 19.6, 21.5, 127.0, 127.2, 127.8, 128.3, 129.0, 129.2, 130.2, 130.5, 131.2, 135.8, 136.6, 140.3, 143.3, 153.2, 164.6, 177.2. ESI-MS: m/z = 287 [M]+. Anal. Calcd for C20H17NO: C, 83.59; H, 5.96; N, 4.87. Found: C, 83.74; H, 6.06; N, 4.72.