Z Gastroenterol 2013; 51(1): 55-62
DOI: 10.1055/s-0032-1330422
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Liver Fibrosis – Mouse Models and Relevance in Human Liver Diseases

Leberfibrose – Mausmodelle und Relevanz für humane Lebererkrankungen
I. Mederacke
1   Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, USA
2   Klinik für Gastroenterologie, Hepatologie und Endokrinologie, Medizinische Hochschule Hannover, Germany
› Author Affiliations
Further Information

Publication History

15 November 2012

03 December 2012

Publication Date:
11 January 2013 (online)

Abstract

Liver fibrosis, the excessive accumulation of extracellular matrix (ECM) in the liver, develops as a long-term consequence of chronic liver injury, and significantly contributes to the mortal complications of chronic liver disease. Different cell types contribute to the hepatic wound healing response. Hepatic stellate cells (HSC) are the main fibrogenic cell in the liver. Upon liver injury, HSCs transdifferentiate into myofibroblasts and contribute to ECM deposition in the liver. Small animal models have provided insight into the activation process of HSCs and the complex interplay of the different cell types involved in liver fibrogenesis. Animal models not only allow one to identify relevant profibrogenic pathways, but also to test the contribution of these pathways to liver disease in preclinical settings. In this review, mouse models of toxic, cholestatic, apoptotic, acoholic, viral and metabolic liver fibrosis will be discussed, with a particular emphasis on the underlying pathophysiology, relevance to human liver disease and drug development.

Zusammenfassung

Leberfibrose, die Akkumulation extrazellulären Matrixproteins (ECM) in der Leber, ist die Folge chronischer Leberentzündung und maßgeblich für die Morbidität und Mortalität chronischer Lebererkrankungen verantwortlich. Hepatische Sternzellen (HSC) stellen die wichtigste fibrogene Zellpopulation der Leber dar. Nach Aktivierung transdifferenzieren HSCs zu Myofibroblasten und produzieren ECM. Tiermodelle konnten Aufschluss über die Aktvierung von HSC geben und das komplexe Zusammenspiel verschiedener Zellpopulationen während der Fibrogenese in der Leber näher beleuchten. Tiermodelle erlauben zum einen, die Identifikation profibrogener Signalwege, zum anderen aber auch deren Rolle im präklinischen Rahmen von verschiedenen Lebererkrankungen zu untersuchen. Dieser Übersichtsartikel soll Mausmodelle basierend auf der zugrunde liegenden Leberschädigung (toxisch, cholestatisch, apoptotisch, alkoholisch, viral und metabolisch) diskutieren sowie die entsprechende Pathophysiologie und Relevanz zur humanen Erkrankung und der Entwicklung von spezifischen Therapien erörtern.

 
  • References

  • 1 Bataller R, Brenner DA. Liver fibrosis. J Clin Invest 2005; 115: 209-218
  • 2 Schuppan D, Afdhal NH. Liver cirrhosis. Lancet 2008; 371: 838-851
  • 3 Forner A, Llovet JM, Bruix J. Hepatocellular carcinoma. Lancet 2012; 379: 1245-1255
  • 4 Knauer CM, Gamble CN, Monroe LS. The reversal of hemochromatotic cirrhosis by multiple phlebotomies. Report of a case. Gastroenterology 1965; 49: 667-671
  • 5 Shiratori Y, Imazeki F, Moriyama M et al. Histologic improvement of fibrosis in patients with hepatitis C who have sustained response to interferon therapy. Ann Intern Med 2000; 132: 517-524
  • 6 Chang TT, Liaw YF, Wu SS et al. Long-term entecavir therapy results in the reversal of fibrosis/cirrhosis and continued histological improvement in patients with chronic hepatitis B. Hepatology 2010; 52: 886-893
  • 7 Hammel P, Couvelard A, O’Toole D et al. Regression of liver fibrosis after biliary drainage in patients with chronic pancreatitis and stenosis of the common bile duct. N Engl J Med 2001; 344: 418-423
  • 8 Weiner RA. Surgical treatment of non-alcoholic steatohepatitis and non-alcoholic fatty liver disease. Dig Dis 2010; 28: 274-279
  • 9 Iredale JP, Benyon RC, Pickering J et al. Mechanisms of spontaneous resolution of rat liver fibrosis. Hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors. J Clin Invest 1998; 102: 538-549
  • 10 Kisseleva T, Cong M, Paik Y et al. Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. Proc Natl Acad Sci U S A 2012; 109: 9448-9453
  • 11 Troeger JS, Mederacke I, Gwak GY et al. Deactivation of hepatic stellate cells during liver fibrosis resolution in mice. Gastroenterology 2012; 143: 1073-1083, e1022
  • 12 Bettermann K, Vucur M, Haybaeck J et al. TAK1 suppresses a NEMO-dependent but NF-kappaB-independent pathway to liver cancer. Cancer Cell 2010; 17: 481-496
  • 13 Inokuchi S, Aoyama T, Miura K et al. Disruption of TAK1 in hepatocytes causes hepatic injury, inflammation, fibrosis, and carcinogenesis. Proc Natl Acad Sci U S A 2010; 107: 844-849
  • 14 Wedemeyer H, Hofmann WP, Lueth S et al. ALT screening for chronic liver diseases: scrutinizing the evidence. Z Gastroenterol 2010; 48: 46-55
  • 15 Pinzani M, Gesualdo L, Sabbah GM et al. Effects of platelet-derived growth factor and other polypeptide mitogens on DNA synthesis and growth of cultured rat liver fat-storing cells. J Clin Invest 1989; 84: 1786-1793
  • 16 Wynn TA, Barron L. Macrophages: master regulators of inflammation and fibrosis. Semin Liver Dis 2010; 30: 245-257
  • 17 Hernandez-Gea V, Friedman SL. Pathogenesis of liver fibrosis. Annu Rev Pathol 2011; 6: 425-456
  • 18 Seki E, De Minicis S, Gwak GY et al. CCR1 and CCR5 promote hepatic fibrosis in mice. J Clin Invest 2009; 119: 1858-1870
  • 19 Kubes P, Mehal WZ. Sterile inflammation in the liver. Gastroenterology 2012; 143: 1158-1172
  • 20 Olsen AL, Bloomer SA, Chan EP et al. Hepatic stellate cells require a stiff environment for myofibroblastic differentiation. Am J Physiol Gastrointest Liver Physiol 2011; 301: G110-118
  • 21 Friedman SL, Roll FJ, Boyles J et al. Hepatic lipocytes: the principal collagen-producing cells of normal rat liver. Proc Natl Acad Sci U S A 1985; 82: 8681-8685
  • 22 Kluwe J, Wongsiriroj N, Troeger JS et al. Absence of hepatic stellate cell retinoid lipid droplets does not enhance hepatic fibrosis but decreases hepatic carcinogenesis. Gut 2011; 60: 1260-1268
  • 23 Dranoff JA, Wells RG. Portal fibroblasts: Underappreciated mediators of biliary fibrosis. Hepatology 2010; 51: 1438-1444
  • 24 Forbes SJ, Russo FP, Rey V et al. A significant proportion of myofibroblasts are of bone marrow origin in human liver fibrosis. Gastroenterology 2004; 126: 955-963
  • 25 Kisseleva T, Uchinami H, Feirt N et al. Bone marrow-derived fibrocytes participate in pathogenesis of liver fibrosis. J Hepatol 2006; 45: 429-438
  • 26 Higashiyama R, Moro T, Nakao S et al. Negligible contribution of bone marrow-derived cells to collagen production during hepatic fibrogenesis in mice. Gastroenterology 2009; 137: 1459-1466, e1451
  • 27 Omenetti A, Porrello A, Jung Y et al. Hedgehog signaling regulates epithelial-mesenchymal transition during biliary fibrosis in rodents and humans. J Clin Invest 2008; 118: 3331-3342
  • 28 Zeisberg M, Yang C, Martino M et al. Fibroblasts derive from hepatocytes in liver fibrosis via epithelial to mesenchymal transition. J Biol Chem 2007; 282: 23337-23347
  • 29 Chu AS, Diaz R, Hui JJ et al. Lineage tracing demonstrates no evidence of cholangiocyte epithelial-to-mesenchymal transition in murine models of hepatic fibrosis. Hepatology 2011; 53: 1685-1695
  • 30 Taura K, Miura K, Iwaisako K et al. Hepatocytes do not undergo epithelial-mesenchymal transition in liver fibrosis in mice. Hepatology 2010; 51: 1027-1036
  • 31 Rowe RG, Lin Y, Shimizu-Hirota R et al. Hepatocyte-derived Snail1 propagates liver fibrosis progression. Mol Cell Biol 2011; 31: 2392-2403
  • 32 Franco DL, Mainez J, Vega S et al. Snail1 suppresses TGF-beta-induced apoptosis and is sufficient to trigger EMT in hepatocytes. J Cell Sci 2010; 123: 3467-3477
  • 33 Duffield JS, Forbes SJ, Constandinou CM et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J Clin Invest 2005; 115: 56-65
  • 34 Seki E, De Minicis S, Osterreicher CH et al. TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med 2007; 13: 1324-1332
  • 35 Rivera CA, Bradford BU, Hunt KJ et al. Attenuation of CCl(4)-induced hepatic fibrosis by GdCl(3) treatment or dietary glycine. Am J Physiol Gastrointest Liver Physiol 2001; 281: G200-207
  • 36 De Minicis S, Seki E, Uchinami H et al. Gene expression profiles during hepatic stellate cell activation in culture and in vivo. Gastroenterology 2007; 132: 1937-1946
  • 37 Pellicoro A, Aucott RL, Ramachandran P et al. Elastin accumulation is regulated at the level of degradation by macrophage metalloelastase (MMP-12) during experimental liver fibrosis. Hepatology 2012; 55: 1965-1975
  • 38 Shi Z, Wakil AE, Rockey DC. Strain-specific differences in mouse hepatic wound healing are mediated by divergent T helper cytokine responses. Proc Natl Acad Sci U S A 1997; 94: 10663-10668
  • 39 Radaeva S, Sun R, Jaruga B et al. Natural killer cells ameliorate liver fibrosis by killing activated stellate cells in NKG2D-dependent and tumor necrosis factor-related apoptosis-inducing ligand-dependent manners. Gastroenterology 2006; 130: 435-452
  • 40 Connolly MK, Bedrosian AS, Mallen-St Clair J et al. In liver fibrosis, dendritic cells govern hepatic inflammation in mice via TNF-alpha. J Clin Invest 2009; 119: 3213-3225
  • 41 Jiao J, Sastre D, Fiel MI et al. Dendritic cell regulation of carbon tetrachloride-induced murine liver fibrosis regression. Hepatology 2012; 55: 244-255
  • 42 Constandinou C, Henderson N, Iredale JP. Modeling liver fibrosis in rodents. Methods Mol Med 2005; 117: 237-250
  • 43 Kluwe J, Pradere JP, Gwak GY et al. Modulation of hepatic fibrosis by c-Jun-N-terminal kinase inhibition. Gastroenterology 2010; 138: 347-359
  • 44 Iredale JP. Models of liver fibrosis: exploring the dynamic nature of inflammation and repair in a solid organ. J Clin Invest 2007; 117: 539-548
  • 45 Weber LW, Boll M, Stampfl A. Hepatotoxicity and mechanism of action of haloalkanes: carbon tetrachloride as a toxicological model. Crit Rev Toxicol 2003; 33: 105-136
  • 46 Perez Tamayo R. Is cirrhosis of the liver experimentally produced by CCl4 and adequate model of human cirrhosis?. Hepatology 1983; 3: 112-120
  • 47 Hillebrandt S, Goos C, Matern S et al. Genome-wide analysis of hepatic fibrosis in inbred mice identifies the susceptibility locus Hfib1 on chromosome 15. Gastroenterology 2002; 123: 2041-2051
  • 48 Fitzhugh OG, Nelson AA. Liver tumors in rats fed thiourea or thioacetamide. Science 1948; 108: 626-628
  • 49 Popov Y, Sverdlov DY, Sharma AK et al. Tissue transglutaminase does not affect fibrotic matrix stability or regression of liver fibrosis in mice. Gastroenterology 2011; 140: 1642-1652
  • 50 Salguero Palacios R, Roderfeld M, Hemmann S et al. Activation of hepatic stellate cells is associated with cytokine expression in thioacetamide-induced hepatic fibrosis in mice. Lab Invest 2008; 88: 1192-1203
  • 51 Guicciardi ME, Gores GJ. Apoptosis as a mechanism for liver disease progression. Semin Liver Dis 2010; 30: 402-410
  • 52 Luedde T, Beraza N, Kotsikoris V et al. Deletion of NEMO/IKKgamma in liver parenchymal cells causes steatohepatitis and hepatocellular carcinoma. Cancer Cell 2007; 11: 119-132
  • 53 Afroudakis A, Kaplowitz N. Liver histopathology in chronic common bile duct stenosis due to chronic alcoholic pancreatitis. Hepatology 1981; 1: 65-72
  • 54 Kountouras J, Billing BH, Scheuer PJ. Prolonged bile duct obstruction: a new experimental model for cirrhosis in the rat. Br J Exp Pathol 1984; 65: 305-311
  • 55 Abraldes JG, Pasarin M, Garcia-Pagan JC. Animal models of portal hypertension. World J Gastroenterol 2006; 12: 6577-6584
  • 56 Aller MA, Arias JL, Garcia-Dominguez J et al. Experimental obstructive cholestasis: the wound-like inflammatory liver response. Fibrogenesis Tissue Repair 2008; 1: 6
  • 57 Georgiev P, Jochum W, Heinrich S et al. Characterization of time-related changes after experimental bile duct ligation. Br J Surg 2008; 95: 646-656
  • 58 Fickert P, Zollner G, Fuchsbichler A et al. Ursodeoxycholic acid aggravates bile infarcts in bile duct-ligated and Mdr2 knockout mice via disruption of cholangioles. Gastroenterology 2002; 123: 1238-1251
  • 59 Yang H, Li TW, Peng J et al. A mouse model of cholestasis-associated cholangiocarcinoma and transcription factors involved in progression. Gastroenterology 2011; 141: 378-388, e371-e374
  • 60 Davit-Spraul A, Gonzales E, Baussan C et al. The spectrum of liver diseases related to ABCB4 gene mutations: pathophysiology and clinical aspects. Semin Liver Dis 2010; 30: 134-146
  • 61 Fickert P, Fuchsbichler A, Wagner M et al. Regurgitation of bile acids from leaky bile ducts causes sclerosing cholangitis in Mdr2 (Abcb4) knockout mice. Gastroenterology 2004; 127: 261-274
  • 62 Popov Y, Patsenker E, Fickert P et al. Mdr2 (Abcb4)–/– mice spontaneously develop severe biliary fibrosis via massive dysregulation of pro- and antifibrogenic genes. J Hepatol 2005; 43: 1045-1054
  • 63 Pikarsky E, Porat RM, Stein I et al. NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 2004; 431: 461-466
  • 64 de Alwis NM, Day CP. Non-alcoholic fatty liver disease: the mist gradually clears. J Hepatol 2008; 48 (Suppl. 01) S104-S112
  • 65 Kohli R, Kirby M, Xanthakos SA et al. High-fructose, medium chain trans fat diet induces liver fibrosis and elevates plasma coenzyme Q9 in a novel murine model of obesity and nonalcoholic steatohepatitis. Hepatology 2010; 52: 934-944
  • 66 Charlton M, Krishnan A, Viker K et al. Fast food diet mouse: novel small animal model of NASH with ballooning, progressive fibrosis, and high physiological fidelity to the human condition. Am J Physiol Gastrointest Liver Physiol 2011; 301: G825-G834
  • 67 Tomita K, Tamiya G, Ando S et al. Tumour necrosis factor alpha signalling through activation of Kupffer cells plays an essential role in liver fibrosis of non-alcoholic steatohepatitis in mice. Gut 2006; 55: 415-424
  • 68 Leclercq IA, Farrell GC, Field J et al. CYP2E1 and CYP4A as microsomal catalysts of lipid peroxides in murine nonalcoholic steatohepatitis. J Clin Invest 2000; 105: 1067-1075
  • 69 Berres ML, Koenen RR, Rueland A et al. Antagonism of the chemokine Ccl5 ameliorates experimental liver fibrosis in mice. J Clin Invest 2010; 120: 4129-4140
  • 70 Takahashi Y, Soejima Y, Fukusato T. Animal models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J Gastroenterol 2012; 18: 2300-2308
  • 71 Leclercq IA, Farrell GC, Schriemer R et al. Leptin is essential for the hepatic fibrogenic response to chronic liver injury. J Hepatol 2002; 37: 206-213
  • 72 Sugihara T, Koda M, Kishina M et al. Fatty liver Shionogi-ob/ob mouse: A new candidate for a non-alcoholic steatohepatitis model. Hepatol Res 2012; Oct 5. doi: 10.1111/j.1872-034X.2012.01101x. [Epub ahead of print]; www.ncbi.nlm.gov/pubmed/23057725
  • 73 Li J, Yen C, Liaw D et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 1997; 275: 1943-1947
  • 74 Stiles B, Wang Y, Stahl A et al. Liver-specific deletion of negative regulator Pten results in fatty liver and insulin hypersensitivity (corrected). Proc Natl Acad Sci U S A 2004; 101: 2082-2087
  • 75 Horie Y, Suzuki A, Kataoka E et al. Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas. J Clin Invest 2004; 113: 1774-1783
  • 76 DeCarli LM, Lieber CS. Fatty liver in the rat after prolonged intake of ethanol with a nutritionally adequate new liquid diet. J Nutr 1967; 91: 331-336
  • 77 Tsukamoto H, Towner SJ, Ciofalo LM et al. Ethanol-induced liver fibrosis in rats fed high fat diet. Hepatology 1986; 6: 814-822
  • 78 Tsukamoto H, Mkrtchyan H, Dynnyk A. Intragastric ethanol infusion model in rodents. Methods Mol Biol 2008; 447: 33-48
  • 79 Inokuchi S, Tsukamoto H, Park E et al. Toll-like receptor 4 mediates alcohol-induced steatohepatitis through bone marrow-derived and endogenous liver cells in mice. Alcohol Clin Exp Res 2011; 35: 1509-1518
  • 80 Jin Z, Sun R, Wei H et al. Accelerated liver fibrosis in hepatitis B virus transgenic mice: involvement of natural killer T cells. Hepatology 2011; 53: 219-229
  • 81 Lerat H, Honda M, Beard MR et al. Steatosis and liver cancer in transgenic mice expressing the structural and nonstructural proteins of hepatitis C virus. Gastroenterology 2002; 122: 352-365
  • 82 Chouteau P, Defer N, Florimond A et al. Hepatitis C virus (HCV) protein expression enhances hepatic fibrosis in HCV transgenic mice exposed to a fibrogenic agent. J Hepatol 2012; 57: 499-507
  • 83 Dandri M, Burda MR, Torok E et al. Repopulation of mouse liver with human hepatocytes and in vivo infection with hepatitis B virus. Hepatology 2001; 33: 981-988
  • 84 Mercer DF, Schiller DE, Elliott JF et al. Hepatitis C virus replication in mice with chimeric human livers. Nat Med 2001; 7: 927-933
  • 85 Sugiyama M, Tanaka Y, Kurbanov F et al. Direct cytopathic effects of particular hepatitis B virus genotypes in severe combined immunodeficiency transgenic with urokinase-type plasminogen activator mouse with human hepatocytes. Gastroenterology 2009; 136: 652-662, e653
  • 86 Washburn ML, Bility MT, Zhang L et al. A humanized mouse model to study hepatitis C virus infection, immune response, and liver disease. Gastroenterology 2011; 140: 1334-1344
  • 87 Czaja MJ, Weiner FR, Flanders KC et al. In vitro and in vivo association of transforming growth factor-beta 1 with hepatic fibrosis. J Cell Biol 1989; 108: 2477-2482
  • 88 Castilla A, Prieto J, Fausto N. Transforming growth factors beta 1 and alpha in chronic liver disease. Effects of interferon alfa therapy. N Engl J Med 1991; 324: 933-940
  • 89 Weiler-Normann C, Herkel J, Lohse AW. Mouse models of liver fibrosis. Z Gastroenterol 2007; 45: 43-50
  • 90 Czochra P, Klopcic B, Meyer E et al. Liver fibrosis induced by hepatic overexpression of PDGF-B in transgenic mice. J Hepatol 2006; 45: 419-428
  • 91 Thieringer F, Maass T, Czochra P et al. Spontaneous hepatic fibrosis in transgenic mice overexpressing PDGF-A. Gene 2008; 423: 23-28
  • 92 Campbell JS, Hughes SD, Gilbertson DG et al. Platelet-derived growth factor C induces liver fibrosis, steatosis, and hepatocellular carcinoma. Proc Natl Acad Sci U S A 2005; 102: 3389-3394
  • 93 Wandzioch E, Kolterud A, Jacobsson M et al. Lhx2–/– mice develop liver fibrosis. Proc Natl Acad Sci U S A 2004; 101: 16549-16554
  • 94 Issa R, Zhou X, Constandinou CM et al. Spontaneous recovery from micronodular cirrhosis: evidence for incomplete resolution associated with matrix cross-linking. Gastroenterology 2004; 126: 1795-1808
  • 95 Popov Y, Sverdlov DY, Bhaskar KR et al. Macrophage-mediated phagocytosis of apoptotic cholangiocytes contributes to reversal of experimental biliary fibrosis. Am J Physiol Gastrointest Liver Physiol 2010; 298: G323-334
  • 96 Stieger K, Belbellaa B, Le Guiner C et al. In vivo gene regulation using tetracycline-regulatable systems. Adv Drug Deliv Rev 2009; 61: 527-541
  • 97 Colmenero J, Bataller R, Sancho-Bru P et al. Effects of losartan on hepatic expression of nonphagocytic NADPH oxidase and fibrogenic genes in patients with chronic hepatitis C. Am J Physiol Gastrointest Liver Physiol 2009; 297: G726-G734
  • 98 Schuppan D, Pinzani M. Anti-fibrotic therapy: lost in translation?. J Hepatol 2012; 56 (Suppl. 01) S66-S74