Synlett, Inhaltsverzeichnis Synlett 2013; 24(13): 1637-1642DOI: 10.1055/s-0033-1339278 letter © Georg Thieme Verlag Stuttgart · New YorkMagnetically Recoverable CuFe2O4 Nanoparticles as Highly Active Catalysts for Csp3–Csp and Csp3–Csp3 Oxidative Cross-Dehydrogenative Coupling Reuben Hudson Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC, H3A 0B8, Canada Fax: +1(514)3983797 eMail: cj.li@mcgill.ca eMail: audrey.moores@mcgill.ca , Shingo Ishikawa Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC, H3A 0B8, Canada Fax: +1(514)3983797 eMail: cj.li@mcgill.ca eMail: audrey.moores@mcgill.ca , Chao-Jun Li* Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC, H3A 0B8, Canada Fax: +1(514)3983797 eMail: cj.li@mcgill.ca eMail: audrey.moores@mcgill.ca , Audrey Moores* Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC, H3A 0B8, Canada Fax: +1(514)3983797 eMail: cj.li@mcgill.ca eMail: audrey.moores@mcgill.ca› InstitutsangabenArtikel empfehlen Abstract Artikel einzeln kaufen Alle Artikel dieser Rubrik Abstract This study probes the versatility of [metal] ferrite {[M]Fe2O4} nanoparticles as an effective catalyst platform for oxidative cross-dehydrogenative coupling (CDC) by comparing the reactivity of simple magnetite (Fe3O4) with that of the copper-substituted analogue, copper ferrite (CuFe2O4). In either case, the iron within the lattice enables magnetic recovery of the nanoparticles, simplifying the process of catalyst recycling. Both iron and copper effectively catalyze the CDC of two sp3 carbons, while copper provides reactivity that iron cannot: activation of sp-hybridized carbons for coupling to sp3 centers. Key words Key wordsferrite - magnetic nanoparticles - oxygen - cross-coupling - C–C bond formation Volltext Referenzen References 1a Astruc D, Lu F, Ruiz Aranzaes J. Angew. Chem. Int. Ed. 2005; 44: 7852 1b Molenbroek AM, Helveg S, Topsoe H, Clausen BS. Top. Catal. 2009; 52: 1303 1c Polshettiwar V, Varma RS. Green Chem. 2010; 12: 743 2a Anastas PT, Bartlett LB, Kirchhoff MM, Williamson TC. Catal. Today 2000; 55: 11 2b Anastas PT, Kirchhoff MM. Acc. Chem. Res. 2002; 35: 686 3a Lu AH, Salabas EL, Schüth F. Angew. Chem. Int. Ed. 2007; 46: 1222 3b Polshettiwar V, Luque R, Fihri A, Zhu H, Bouhrara M, Bassett J.-M. Chem. Rev. 2011; 111: 3036 4a Polshettiwar V, Varma RS. Chem. Eur. J. 2009; 15: 1582 4b Polshettiwar V, Baruwati B, Varma RS. Green Chem. 2009; 11: 127 4c Polshettiwar V, Varma RS. Org. Biomol. Chem. 2009; 7: 37 5a Polshettiwar V, Baruwati B, Varma RS. Chem. Commun. 2009; 1837 5b Gleeson O, Davies G.-L, Peschiulli A, Tekoriute R, Gun’ko YK, Connon SJ. Org. Biomol. Chem. 2011; 9: 7929 6a Stevens PD, Fan J, Gardimalla HM. R, Yen M, Gao Y. Org. Lett. 2005; 7: 2085 6b Zeng T, Yang L, Hudson R, Song G, Moores AR, Li C.-J. Org. Lett 2011; 13: 422 7a Lv G, Mai W, Jin R, Gao L. Synlett 2008; 1418 7b Wang BG, Ma BC, Wang Q, Wang W. Adv. Synth. Catal. 2010; 352: 2923 8 Huber DL. Small 2005; 1: 482 9a Hudson R, Riviere A, Cirtiu CM, Luska KL, Moores A. Chem. Commun. 2012; 3360 9b Phua PH, Lefort L, Boogers JA. F, Tristany M, de Vries JG. Chem. Commun. 2009; 3747 9c Rangheard C, De Julian Fernandez C, Phua PH, Hoorn J, Lefort L, De Vries JG. Dalton Trans. 2010; 39: 8464 9d Stein M, Wieland J, Steurer P, Toelle F, Muelhaupt R, Breit B. Adv. Synth. Catal. 2011; 353: 523 10a Yan J.-M, Zhang X.-B, Han S, Shioyama H, Xu Q. Angew. Chem. Int Ed. 2008; 47: 2287 10b Dinç M, Metin Ö, Özkar S. Catal. Today 2012; 183: 10 11 Bedford RB, Betham M, Bruce DW, Davis SA, Frost RM, Hird M. Chem. Commun. 2006; 1398 12a Zhou S, Johnson M, Veinot JG. C. Chem. Commun. 2010; 2411 12b Hudson R, Li CJ, Moores A. Green Chem. 2012; 14: 622 13a Reddy BV. S, Krishna AS, Ganesh AV, Kumar GG. K. S. N. Tetrahedron Lett. 2011; 52: 1359 13b Shi F, Tse MK, Pohl M.-M, Brückner A, Zhang S, Beller M. Angew. Chem. Int. Ed. 2007; 46: 8866 13c Zeng TQ, Chen W.-W, Cirtiu CM, Moores A, Song GH, Li C.-J. Green Chem. 2010; 12: 570 14a Kantam ML, Yadav J, Laha S, Jha S. Synlett 2009; 1791 14b Kantam ML, Yadav J, Laha S, Srinivas P, Sreedhar B, Figueras F. J. Org. Chem. 2009; 74: 4608 14c Kooti M, Afshari M. Sci. Iran. 2012; 19: 1991 14d Kumar B, Reddy KH. V, Madhav B, Ramesh K, Nageswar YV. D. Tetrahedron Lett. 2012; 53: 4595 14e Menini L, Pereira MC, Parreira LA, Fabris JD, Gusevskaya EV. J. Catal. 2008; 254: 355 14f Panda N, Jena AK, Mohapatra S. Chem. Lett. 2011; 40: 956 14g Panda N, Jena AK, Mohapatra S, Rout SR. Tetrahedron Lett. 2011; 52: 1924 14h Senapati KK, Borgohain C, Phukan P. J. Mol. Catal. A: Chem. 2011; 339: 24 14i Sreedhar B, Kumar AS, Yada D. Tetrahedron Lett. 2011; 52: 3565 14j Swapna K, Murthy SN, Jyothi MT, Nageswar YV. D. Org. Biomol. Chem. 2011; 9: 5989 14k Swapna K, Murthy SN, Nageswar YV. D. Eur. J. Org. Chem. 2011; 1940 14l Zhang RZ, Liu JM, Wang SF, Niu JZ, Xia CG, Sun W. ChemCatChem 2011; 3: 146 14m Hudson, R.; Silverman, J.; Li, C.-J.; Moores, A. Proceedings of the Third International Conference on Nanotechnology 7–9 August 2012. Paper No. 318. 14n Ishikawa S, Hudson R, Moores A, Li C.-J. Heterocycles 2012; 86: 1023 14o Yang S, Wu C, Zhou H, Yang Y, Zhao Y, Wang C, Yang W, Xu J. Adv. Synth. Catal. 2013; 355: 53 14p Hudson R. Synlett 2013; 24: 1309 14q Yang S, Xie W, Zhou H, Wu C, Yang Y, Niu J, Yang W, Xu J. Tetrahedron 2013; 69: 3415 15 Zeng T, Song G, Moores A, Li C.-J. Synlett 2010; 2002 16a Li C.-J. Acc. Chem. Res. 2008; 42: 335 16b Zhao L, Baslé O, Li C.-J. Proc. Natl. Acad. Sci. U.S.A. 2009; 106: 4106 16c Li Z, Li C.-J. J. Am. Chem. Soc. 2005; 127: 3672 16d Li Z, Li C.-J. J. Am. Chem. Soc. 2005; 127: 6968 16e Zhang Y, Li CJ. Angew. Chem. 2006; 118: 1883 16f Scheuermann CJ. Chem. Asian J. 2010; 5: 436 16g Correia CA, Li C.-J. Adv. Synth. Catal. 2010; 352: 1446 17 Li YZ, Li BJ, Lu XY, Lin S, Shi ZJ. Angew. Chem. Int. Ed. 2009; 48: 3817 18 Yoo W.-J, Li C.-J. CH Activation 2010; 281 19a Alagiri K, Kumara GS. R, Prabhu KR. Chem. Commun. 2011; 11787 19b Murarka S, Studer A. Org. Lett. 2011; 13: 2746 20 Li Z, Bohle DS, Li C.-J. Proc. Natl. Acad. Sci. U.S.A. 2006; 103: 8928 21 Zhang Y, Li C.-J. J. Am. Chem. Soc. 2006; 128: 4242 22 Shu X.-Z, Yang Y.-F, Xia X.-F, Ji K.-G, Liu X.-Y, Liang Y.-M. Org. Biomol. Chem. 2010; 8: 4077 23 Experimental Procedure CuFe2O3 (<50 nm particle size), Fe2O4 (<50 nm particle size) and other reagents were purchased from Sigma-Aldrich and used as received. 2-Aryl-1,2,3,4-tetrahydroisoquinolines were prepared by a previously reported method. For coupling with nitroalkanes, CuFe2O3 nanoparticles (0.02 mmol), nitroalkane (0.5 mL), 2-aryl-1,2,3,4-tetrahydroisoquinolines (0.2 mmol), and a magnetic stir bar were added to a reaction vessel to which a refluxing condenser was connected and a balloon of O2 sealed the top and reacted at 100 °C for 24 h. For coupling with aromatic alkynes, CuFe2O3 nanoaprticles (0.02 mmol), aromatic alkyne (0.22 mmol), 2-aryl-1,2,3,4-tetrahydroisoquinolines (0.2 mmol), 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (0.2 mmol), decane (0.5 mL), and a magnetic stir bar were added to a reaction vessel, sealed, and reacted at 100 °C for 24 h. The nanoparticles were magnetically recovered, washed with EtOAc, air-dried, and reused without further modification (only for the recycling tests). The reaction supernatant was filtered through Celite, and any volatile compounds were removed under vacuum. The residue was purified by flash column chromatography on silica gel (eluent: hexane–EtOAc, 5:1). Zusatzmaterial Zusatzmaterial Supporting Information