Synlett 2013; 24(13): 1637-1642
DOI: 10.1055/s-0033-1339278
letter
© Georg Thieme Verlag Stuttgart · New York

Magnetically Recoverable CuFe2O4 Nanoparticles as Highly Active Catalysts for Csp3–Csp and Csp3–Csp3 Oxidative Cross-Dehydrogenative Coupling

Reuben Hudson
Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC, H3A 0B8, Canada   Fax: +1(514)3983797   Email: cj.li@mcgill.ca   Email: audrey.moores@mcgill.ca
,
Shingo Ishikawa
Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC, H3A 0B8, Canada   Fax: +1(514)3983797   Email: cj.li@mcgill.ca   Email: audrey.moores@mcgill.ca
,
Chao-Jun Li*
Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC, H3A 0B8, Canada   Fax: +1(514)3983797   Email: cj.li@mcgill.ca   Email: audrey.moores@mcgill.ca
,
Audrey Moores*
Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC, H3A 0B8, Canada   Fax: +1(514)3983797   Email: cj.li@mcgill.ca   Email: audrey.moores@mcgill.ca
› Author Affiliations
Further Information

Publication History

Received: 03 April 2013

Accepted after revision: 24 May 2013

Publication Date:
15 July 2013 (online)


Abstract

This study probes the versatility of [metal] ferrite {[M]Fe2O4} nanoparticles as an effective catalyst platform for oxidative cross-dehydrogenative coupling (CDC) by comparing the reactivity of simple magnetite (Fe3O4) with that of the copper-substituted analogue, copper ferrite (CuFe2O4). In either case, the iron within the lattice enables magnetic recovery of the nanoparticles, simplifying the process of catalyst recycling. Both iron and copper effectively catalyze the CDC of two sp3 carbons, while copper provides reactivity that iron cannot: activation of sp-hybridized carbons for coupling to sp3 centers.

Supporting Information

 
  • References

    • 1a Astruc D, Lu F, Ruiz Aranzaes J. Angew. Chem. Int. Ed. 2005; 44: 7852
    • 1b Molenbroek AM, Helveg S, Topsoe H, Clausen BS. Top. Catal. 2009; 52: 1303
    • 1c Polshettiwar V, Varma RS. Green Chem. 2010; 12: 743
    • 2a Anastas PT, Bartlett LB, Kirchhoff MM, Williamson TC. Catal. Today 2000; 55: 11
    • 2b Anastas PT, Kirchhoff MM. Acc. Chem. Res. 2002; 35: 686
    • 3a Lu AH, Salabas EL, Schüth F. Angew. Chem. Int. Ed. 2007; 46: 1222
    • 3b Polshettiwar V, Luque R, Fihri A, Zhu H, Bouhrara M, Bassett J.-M. Chem. Rev. 2011; 111: 3036
    • 4a Polshettiwar V, Varma RS. Chem. Eur. J. 2009; 15: 1582
    • 4b Polshettiwar V, Baruwati B, Varma RS. Green Chem. 2009; 11: 127
    • 4c Polshettiwar V, Varma RS. Org. Biomol. Chem. 2009; 7: 37
    • 5a Polshettiwar V, Baruwati B, Varma RS. Chem. Commun. 2009; 1837
    • 5b Gleeson O, Davies G.-L, Peschiulli A, Tekoriute R, Gun’ko YK, Connon SJ. Org. Biomol. Chem. 2011; 9: 7929
    • 6a Stevens PD, Fan J, Gardimalla HM. R, Yen M, Gao Y. Org. Lett. 2005; 7: 2085
    • 6b Zeng T, Yang L, Hudson R, Song G, Moores AR, Li C.-J. Org. Lett 2011; 13: 422
  • 8 Huber DL. Small 2005; 1: 482
    • 9a Hudson R, Riviere A, Cirtiu CM, Luska KL, Moores A. Chem. Commun. 2012; 3360
    • 9b Phua PH, Lefort L, Boogers JA. F, Tristany M, de Vries JG. Chem. Commun. 2009; 3747
    • 9c Rangheard C, De Julian Fernandez C, Phua PH, Hoorn J, Lefort L, De Vries JG. Dalton Trans. 2010; 39: 8464
    • 9d Stein M, Wieland J, Steurer P, Toelle F, Muelhaupt R, Breit B. Adv. Synth. Catal. 2011; 353: 523
    • 10a Yan J.-M, Zhang X.-B, Han S, Shioyama H, Xu Q. Angew. Chem. Int Ed. 2008; 47: 2287
    • 10b Dinç M, Metin Ö, Özkar S. Catal. Today 2012; 183: 10
  • 11 Bedford RB, Betham M, Bruce DW, Davis SA, Frost RM, Hird M. Chem. Commun. 2006; 1398
    • 12a Zhou S, Johnson M, Veinot JG. C. Chem. Commun. 2010; 2411
    • 12b Hudson R, Li CJ, Moores A. Green Chem. 2012; 14: 622
    • 13a Reddy BV. S, Krishna AS, Ganesh AV, Kumar GG. K. S. N. Tetrahedron Lett. 2011; 52: 1359
    • 13b Shi F, Tse MK, Pohl M.-M, Brückner A, Zhang S, Beller M. Angew. Chem. Int. Ed. 2007; 46: 8866
    • 13c Zeng TQ, Chen W.-W, Cirtiu CM, Moores A, Song GH, Li C.-J. Green Chem. 2010; 12: 570
    • 14a Kantam ML, Yadav J, Laha S, Jha S. Synlett 2009; 1791
    • 14b Kantam ML, Yadav J, Laha S, Srinivas P, Sreedhar B, Figueras F. J. Org. Chem. 2009; 74: 4608
    • 14c Kooti M, Afshari M. Sci. Iran. 2012; 19: 1991
    • 14d Kumar B, Reddy KH. V, Madhav B, Ramesh K, Nageswar YV. D. Tetrahedron Lett. 2012; 53: 4595
    • 14e Menini L, Pereira MC, Parreira LA, Fabris JD, Gusevskaya EV. J. Catal. 2008; 254: 355
    • 14f Panda N, Jena AK, Mohapatra S. Chem. Lett. 2011; 40: 956
    • 14g Panda N, Jena AK, Mohapatra S, Rout SR. Tetrahedron Lett. 2011; 52: 1924
    • 14h Senapati KK, Borgohain C, Phukan P. J. Mol. Catal. A: Chem. 2011; 339: 24
    • 14i Sreedhar B, Kumar AS, Yada D. Tetrahedron Lett. 2011; 52: 3565
    • 14j Swapna K, Murthy SN, Jyothi MT, Nageswar YV. D. Org. Biomol. Chem. 2011; 9: 5989
    • 14k Swapna K, Murthy SN, Nageswar YV. D. Eur. J. Org. Chem. 2011; 1940
    • 14l Zhang RZ, Liu JM, Wang SF, Niu JZ, Xia CG, Sun W. ChemCatChem 2011; 3: 146
    • 14m Hudson, R.; Silverman, J.; Li, C.-J.; Moores, A. Proceedings of the Third International Conference on Nanotechnology 7–9 August 2012. Paper No. 318.
    • 14n Ishikawa S, Hudson R, Moores A, Li C.-J. Heterocycles 2012; 86: 1023
    • 14o Yang S, Wu C, Zhou H, Yang Y, Zhao Y, Wang C, Yang W, Xu J. Adv. Synth. Catal. 2013; 355: 53
    • 14p Hudson R. Synlett 2013; 24: 1309
    • 14q Yang S, Xie W, Zhou H, Wu C, Yang Y, Niu J, Yang W, Xu J. Tetrahedron 2013; 69: 3415
  • 15 Zeng T, Song G, Moores A, Li C.-J. Synlett 2010; 2002
    • 16a Li C.-J. Acc. Chem. Res. 2008; 42: 335
    • 16b Zhao L, Baslé O, Li C.-J. Proc. Natl. Acad. Sci. U.S.A. 2009; 106: 4106
    • 16c Li Z, Li C.-J. J. Am. Chem. Soc. 2005; 127: 3672
    • 16d Li Z, Li C.-J. J. Am. Chem. Soc. 2005; 127: 6968
    • 16e Zhang Y, Li CJ. Angew. Chem. 2006; 118: 1883
    • 16f Scheuermann CJ. Chem. Asian J. 2010; 5: 436
    • 16g Correia CA, Li C.-J. Adv. Synth. Catal. 2010; 352: 1446
  • 17 Li YZ, Li BJ, Lu XY, Lin S, Shi ZJ. Angew. Chem. Int. Ed. 2009; 48: 3817
  • 18 Yoo W.-J, Li C.-J. CH Activation 2010; 281
    • 19a Alagiri K, Kumara GS. R, Prabhu KR. Chem. Commun. 2011; 11787
    • 19b Murarka S, Studer A. Org. Lett. 2011; 13: 2746
  • 20 Li Z, Bohle DS, Li C.-J. Proc. Natl. Acad. Sci. U.S.A. 2006; 103: 8928
  • 21 Zhang Y, Li C.-J. J. Am. Chem. Soc. 2006; 128: 4242
  • 22 Shu X.-Z, Yang Y.-F, Xia X.-F, Ji K.-G, Liu X.-Y, Liang Y.-M. Org. Biomol. Chem. 2010; 8: 4077
  • 23 Experimental Procedure CuFe2O3 (<50 nm particle size), Fe2O4 (<50 nm particle size) and other reagents were purchased from Sigma-Aldrich and used as received. 2-Aryl-1,2,3,4-tetrahydroisoquinolines were prepared by a previously reported method. For coupling with nitroalkanes, CuFe2O3 nanoparticles (0.02 mmol), nitroalkane (0.5 mL), 2-aryl-1,2,3,4-tetrahydroisoquinolines (0.2 mmol), and a magnetic stir bar were added to a reaction vessel to which a refluxing condenser was connected and a balloon of O2 sealed the top and reacted at 100 °C for 24 h. For coupling with aromatic alkynes, CuFe2O3 nanoaprticles (0.02 mmol), aromatic alkyne (0.22 mmol), 2-aryl-1,2,3,4-tetrahydroisoquinolines (0.2 mmol), 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (0.2 mmol), decane (0.5 mL), and a magnetic stir bar were added to a reaction vessel, sealed, and reacted at 100 °C for 24 h. The nanoparticles were magnetically recovered, washed with EtOAc, air-dried, and reused without further modification (only for the recycling tests). The reaction supernatant was filtered through Celite, and any volatile compounds were removed under vacuum. The residue was purified by flash column chromatography on silica gel (eluent: hexane–EtOAc, 5:1).