Synlett 2013; 24(13): 1649-1656
DOI: 10.1055/s-0033-1339307
letter
© Georg Thieme Verlag Stuttgart · New York

Zinc-Mediated Asymmetric Allylation of Chiral N-tert-Butanesulfinyl Aldimines with 3-Bromomethyl-5H-furan-2-one

An Shen
Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China   Fax: +86(21)54925081   Email: [email protected]   Email: [email protected]
,
Zhi-Tao He
Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China   Fax: +86(21)54925081   Email: [email protected]   Email: [email protected]
,
Hong-Jie Yu
Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China   Fax: +86(21)54925081   Email: [email protected]   Email: [email protected]
,
Yuki Fukui
Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China   Fax: +86(21)54925081   Email: [email protected]   Email: [email protected]
,
Ping Tian*
Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China   Fax: +86(21)54925081   Email: [email protected]   Email: [email protected]
,
Guo-Qiang Lin*
Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China   Fax: +86(21)54925081   Email: [email protected]   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 09 May 2013

Accepted after revision: 03 June 2013

Publication Date:
17 July 2013 (online)


Abstract

The zinc-mediated asymmetric allylation of chiral N-tert-butanesulfinyl aldimines with 3-bromomethyl-5H-furan-2-one proceeded in good anti/syn selectivities, providing optically pure substituted α-methylene-γ-butyrolactones bearing chiral amine with moderate to excellent yields (28–92%) and diastereoselectivities (76% to >99% de).

Supporting Information

 
  • References and Notes

    • 1a Kitson RR. A, Millemaggi A, Taylor RJ. K. Angew. Chem. Int. Ed. 2009; 48: 9426
    • 1b Lepoittevin J.-P, Berl V, Giménez-Arnau E. Chem. Rec. 2009; 9: 258
    • 1c Veeraraghavan RP, Michele Y.-S, Max SC. Future Med. Chem. 2009; 1: 179
    • 2a Merfort I. Curr. Drug Targets 2011; 12: 1560
    • 2b Schmidt TJ. Stud. Nat. Prod. Chem. 2006; 33: 309
    • 2c Zhang S, Won Y.-K, Ong C.-N, Shen H.-M. Curr. Med. Chem. Anticancer Agents 2005; 5: 239
    • 3a Picman AK. Biochem. Syst. Ecol. 1986; 14: 255
    • 3b Hoffmann HM, Rabe J. Angew. Chem., Int. Ed. Engl. 1985; 24: 94
    • 4a Alves JC. F. Org. Chem. Int. 2011; 170196
    • 4b Vichnewski W, Gilbert B. Phytochemistry 1972; 11: 2563
    • 4c Baker PM, Fortes CC, Fortes EG, Gazzinelli G, Gilbert B, Lopes JN. C, Pellegrino J, Tomassini TC. B, Vichnewski W. J. Pharm. Pharmacol. 1972; 24: 853
    • 5a Kalidindi S, Jeong WB, Schall A, Bandichhor R, Nosse B, Reiser O. Angew. Chem. Int. Ed. 2007; 46: 6361
    • 5b Zhangabylov NS, Dederer LY, Gorbacheva LB, Vasil’eva SV, Terekhov AS, Adekenov SM. Pharm. Chem. J. 2004; 38: 651
    • 5c Shaikenov TE, Adekenov SM, Williams RM, Prashad N, Baker FL, Madden TL, Newman R. Oncol. Rep. 2001; 8: 173
    • 5d Adekenov SM, Mukhametzhanov MN, Kagarlitskii AD, Kupriyanov AN. Khim. Prir. Soedin. 1982; 655
    • 6a Cijo George V, Naveen Kumar DR, Suresh PK, Ashok Kumar R. Int. J. Pharm. 2012; 3: 69
    • 6b Bedoya LM, Abad MJ, Bermejo P. Curr. Signal Transduct. Ther. 2008; 3: 82
    • 7a Qin J.-J, Zhu J.-X, Zeng Q, Cheng X.-R, Zhu Y, Zhang S.-D, Shan L, Jin H.-Z, Zhang W.-D. J. Nat. Prod. 2011; 74: 1881
    • 7b Lyss G, Knorre A, Schmidt TJ, Pahl HL, Merfort I. J. Biol. Chem. 1998; 273: 33508
    • 7c Lyss G, Schmidt TJ, Merfort I, Pahl HL. Biol. Chem. 1997; 378: 951
    • 8a Hodgson DM, Talbota EP. A, Clark BP. Chem. Commun. 2012; 48: 6349
    • 8b Theodori R, Karioti A, Rančić A, Skaltsa H. J. Nat. Prod. 2006; 69: 662
  • 9 Scotti MT, Fernandes MB, Ferreira MJ. P, Emerenciano VP. Bioorg. Med. Chem. 2007; 15: 2927

    • Selected examples:
    • 10a Yang H, Qiao X, Li F, Ma H, Xie L, Xu X. Tetrahedron Lett. 2009; 50: 1110
    • 10b Hirose T, Miyakoshi N, Mukai C. J. Org. Chem. 2008; 73: 1061
    • 10c Yokoe H, Yoshida M, Shishido K. Tetrahedron Lett. 2008; 49: 3504
    • 10d Justicia J, de Cienfuegos LÁ, Estévez RE, Paradas M, Lasanta AM, Oller JL, Rosales A, Cuerva JM, Oltra JE. Tetrahedron 2008; 64: 11938
    • 10e Edwards MG, Kenworthy MN, Kitson RR. A, Scott MS, Taylor RJ. K. Angew. Chem. Int. Ed. 2008; 47: 1935
    • 10f Edwards MG, Kenworthy MN, Kitson RR. A, Perry A, Scott MS, Whitwood AC, Taylor RJ. K. Eur. J. Org. Chem. 2008; 4769
    • 10g Frankowski KJ, Golden JE, Zeng Y, Lei Y, Aubé J. J. Am. Chem. Soc. 2008; 130: 6018
    • 11a Zhao S.-M, Wang M.-X. Chin. J. Chem. 2002; 20: 1291
    • 11b Adam W, Groer P, Saha-Möller CR. Tetrahedron: Asymmetry 2000; 11: 2239
    • 11c Ballini R, Marcantoni E, Perella S. J. Org. Chem. 1999; 64: 2954

      Selected examples of allylboronic reagents containing carboxylic esters:
    • 12a Elford TE, Hall DG. J. Am. Chem. Soc. 2010; 132: 1488
    • 12b Ramachandran PV, Pratihar D. Org. Lett. 2007; 9: 2087
    • 12c Ramachandran PV, Pratihar D, Biswas D, Srivastava A, Reddy MV. R. Org. Lett. 2004; 6: 481
    • 12d Kennedy JW. J, Hall DG. J. Am. Chem. Soc. 2002; 124: 11586

    • Selected examples of allylzinc reagents containin carboxylic esters:
    • 12e Bardaji N, Sanchez-Izquierdo F, Alibes R, Font J, Busque F, Figueredo M. Org. Lett. 2012; 14: 4854
    • 12f Chen Z.-H, Zhang Y.-Q, Chen Z.-M, Tu Y.-Q, Zhang F.-M. Chem. Commun. 2011; 47: 1836
    • 12g Sánchez-Izquierdo F, Blanco P, Busqué F, Alibés R, de March P, Figueredo M, Font J, Parella T. Org. Lett. 2007; 9: 1769

    • Selected examples of other allylmetallic reagents containing carboxylic esters:
    • 12h Park BR, Kim KH, Lim JW, Kim JN. Tetrahedron Lett. 2012; 53: 36
    • 12i Baldwin JE, Adlington RM, Sweeney JB. Tetrahedron Lett. 1986; 27: 5423
    • 12j Hosomi A, Hashimoto H, Sakurai H. Tetrahedron Lett. 1980; 21: 951

      Selected examples:
    • 13a Montgomery TP, Hassan A, Park BY, Krische MJ. J. Am. Chem. Soc. 2012; 134: 11100
    • 13b Kang SK, Kim KJ, Hong YT. Angew. Chem. Int. Ed. 2002; 41: 1584
    • 13c Takizawa S, Nguyen TM, Grossmann A, Enders D, Sasai H. Angew. Chem. Int. Ed. 2012; 51: 5423
    • 14a Gao Y.-Z, Wang X, Sun L.-D, Xie L.-G, Xu X.-H. Org. Biomol. Chem. 2012; 10: 3991
    • 14b Yang H.-S, Gao Y.-Z, Qiao X.-X, Xie L.-G, Xu X.-H. Org. Lett. 2011; 13: 3670
    • 14c Cui Q, Wang J, Yang H.-S, Xie L.-G, Xu X.-H. Chin. J. Org. Chem. 2010; 30: 1705
    • 14d Yang H.-S, Qiao X.-X, Cui Q, Xu X.-H. Chin. Chem. Lett. 2009; 20: 1023
    • 15a Hodgson DM, Talbota EP. A, Clark BP. Chem. Commun. 2012; 48: 6349
    • 15b Hodgson DM, Talbota EP. A, Clark BP. Org. Lett. 2011; 13: 2594
    • 16a Shen A, Liu M, Jia Z.-S, Xu M.-H, Lin G.-Q. Org. Lett. 2010; 12: 5154
    • 16b Liu M, Shen A, Sun X.-W, Xu M.-H, Lin G.-Q. Chem. Commun. 2010; 46: 8460
    • 16c Liu M, Sun X.-W, Xu M.-H, Lin G.-Q. Chem. Eur. J. 2009; 15: 10217
    • 16d Sun X.-W, Liu M, Xu M.-H, Lin G.-Q. Org. Lett. 2008; 10: 1259
    • 16e Sun X.-W, Xu M.-H, Lin G.-Q. Org. Lett. 2006; 8: 4979
    • 17a Sirvent JA, Foubelo F, Yus M. Chem. Commun. 2012; 48: 2543
    • 17b Schulte ML, Lindsley CW. Org. Lett. 2011; 13: 5684
    • 17c Dema HK, Foubelo F, Yus M. Heterocycles 2011; 82: 1411
    • 17d Medjahdi M, González-Gómez JC, Foubelo F, Yus M. J. Org. Chem. 2009; 74: 7859
    • 17e Reddy LR, Hu B, Prashad M, Prasad K. Org. Lett. 2008; 10: 3109
    • 17f Medjahdi M, González-Gómez JC, Foubelo F, Yus M. Heterocycles 2008; 76: 569
    • 17g Foubelo F, Yus M. Tetrahedron: Asymmetry 2004; 15: 3823

      For recent reviews on chiral N-sulfinyl imine chemistry, see:
    • 18a Lin G.-Q, Xu M.-H, Zhong Y.-W, Sun X.-W. Acc. Chem. Res. 2008; 41: 831
    • 18b Morton D, Stockman RA. Tetrahedron 2006; 62: 8869
    • 18c Senanayake CH, Krishnamurthy D, Lu Z, Han Z, Gallou I. Aldrichimica Acta 2005; 38: 93
    • 18d Ellman JA, Owens TD, Tang TP. Acc. Chem. Res. 2002; 35: 984
  • 19 Basile T, Bocoum A, Savoia D, Umani-Ronchi A. J. Org. Chem. 1994; 59: 7766
  • 20 These data (CCDC 930084) can be obtained free of charge in the Supporting Information or from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
  • 21 Tian P, Dong H.-Q, Lin G.-Q. ACS Catal. 2012; 2: 95
  • 22 Analytical Data of 9a [α]D 27 –5.8 (c 0.99, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 1.19 (s, 9 H), 2.66–2.76 (m, 3 H), 2.88–2.92 (m, 1 H), 3.56 (d, 1 H, J = 7.6 Hz), 4.06–4.11 (m, 1 H), 4.20–4.25 (m, 2 H), 7.04–7.07 (m, 2 H), 7.10–7.13 (m, 2 H), 7.24–7.34 (m, 6 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 22.6, 35.2, 44.3, 44.9, 56.7, 61.9, 68.4, 126.8, 127.1, 128.5, 128.8, 129.0, 129.4, 137.1, 139.8, 178.2 ppm. FTIR (KBr): ν = 3221, 2958, 2922, 2853, 1769, 1496, 1455, 1363, 1162, 1054, 1024, 757, 701 cm–1. ESI-MS: m/z (%) = 408.1 [M + Na+]. ESI-HRMS: m/z calcd for C22H27NO3SNa+ [M + Na+]: 408.1604; found: 408.1606.
  • 23 Analytical Data of Some Typical Compounds Compound 6a: [α]D 26 –116.3 (c 0.40, CHCl3). 1H NMR (400 MHz, CDCl3): δ 1.23 (s, 9 H), 3.55 (d, 1 H, J = 6.4 Hz), 3.64–3.69 (m, 1 H), 4.39–4.49 (m, 2 H), 4.53 (t, 1 H, J = 6.6 Hz), 5.28 (d, 1 H, J = 2.0 Hz), 6.28 (d, 1 H, J = 2.0 Hz), 7.29–7.42 (m, 5 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 22.6, 43.8, 56.6, 62.6, 67.7, 125.2, 127.3, 128.6, 129.1, 134.8, 139.3, 170.2 ppm. FTIR (KBr): ν = 3504, 3416, 3133, 2979, 2918, 1771, 1664, 1458, 1363, 1280, 1133, 1038, 937, 701, 678 cm–1. ESI-MS: m/z (%) = 330.1 [M+ + Na]. ESI-HRMS: m/z calcd for C16H21NO3SNa+ [M+ + Na] 330.1139; found: 330.1134. Compound 6b: [α]D 26 –44.2 (c 0.99, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 1.22 (s, 9 H), 3.50 (d, 1 H, J = 6.8 Hz), 3.60–3.64 (m, 1 H), 4.35–4.49 (m, 3 H), 5.29 (d, 1 H, J = 2.0 Hz), 6.30 (d, 1 H, J = 2.4 Hz), 7.20 (d, 2 H, J = 8.8 Hz), 7.53 (d, 2 H, J = 8.4 Hz) ppm. 13C NMR (100 MHz, CDCl3): δ = 22.6, 43.8, 56.8, 62.3, 67.6, 122.9, 125.4, 129.1, 132.4, 134.7, 138.3, 170.0 ppm. FTIR (KBr): ν = 3425, 3098, 2986, 2924, 1770, 1660, 1489, 1410, 1283, 1266, 1135, 1023, 1011, 942, 832, 729, 678 cm–1. ESI-MS: m/z (%) = 408.0 [M – 1+ + Na], 410.0 [M – 1+ + Na]. ESI-HRMS: m/z calcd for C16H20BrNO3SNa+ [M+ + Na]: 408.0249; found: 408.0240. Compound 6c: [α]D 26 –39.3 (c 1.16, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 1.23 (s, 9 H), 3.53 (d, 1 H, J = 7.2 Hz), 3.59–3.64 (m, 1 H), 4.37–4.49 (m, 3 H), 5.29 (d, 1 H, J = 2.0 Hz), 6.31 (d, 1 H, J = 2.0 Hz), 7.28 (d, 2 H, J = 5.2 Hz), 7.46–7.52 (m, 2 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 22.7, 43.9, 56.9, 62.4, 67.6, 123.2, 125.5, 126.3, 130.4, 130.7, 131.9, 134.6, 141.7, 170.1 ppm. FTIR (KBr): ν = 3168, 2963, 1759, 1655, 1594, 1474, 1429, 1363, 1263, 1119, 1040, 950, 850, 796, 704, 676 cm–1. ESI-MS: m/z (%) = 408.0 [M+ – 1 + Na], 410.0 [M+ + 1 + Na]. ESI-HRMS: m/z calcd for C16H20BrNO3SNa+ [M+ + Na]: 408.0242; found: 408.0240. Compound 6d: [α]D 26 –20.4 (c 1.05, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 1.22 (s, 9 H), 3.66–3.71 (m, 1 H), 4.00 (d, 1 H, J = 9.6 Hz), 4.34–4.44 (m, 2 H), 4.72 (d, 1 H, J = 8.8 Hz), 5.17 (d, 1 H, J = 1.6 Hz), 6.24 (d, 1 H, J = 2.0 Hz), 7.24–7.44 (m, 2 H), 7.45 (s, 1 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 22.5, 43.5, 57.1, 61.0, 67.5, 125.3, 127.9, 130.2, 130.3, 133.5, 134.6, 135.1, 135.4, 169.9 ppm. FTIR (KBr): ν = 3314, 2957, 2912, 1743, 1663, 1475, 1362, 1271, 1233, 1206, 1120, 1079, 1041, 996, 981, 828, 728, 570 cm–1. ESI-MS: m/z (%) = 398.1 [M+ + Na]. ESI-HRMS: m/z calcd for C16H19Cl2NO3SNa+ [M+ + Na]: 398.0363; found: 398.0355. Compound 6e: [α]D 26 –48.0 (c 0.28, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 1.22 (s, 9 H), 3.55 (d, 1 H, J = 6.4 Hz), 3.63–3.64 (m, 1 H), 3.80 (s, 3 H), 4.36–4.49 (m, 3 H), 5.27 (s, 1 H), 6.27 (d, 1 H, J = 2.0 Hz), 6.90 (d, 2 H, J = 8.4 Hz), 7.23 (d, 2 H, J = 8.4 Hz) ppm. 13C NMR (100 MHz, CDCl3): δ = 22.6, 43.8, 55.3, 56.6, 62.2, 67.8, 114.6, 125.2, 128.6, 131.3, 135.0, 159.8, 170.3 ppm. FTIR (KBr): ν = 3387, 3088, 2958, 2923, 2852, 1769, 1659, 1611, 1515, 1468, 1274, 1250, 1180, 1137, 1034, 944, 828, 733, 681 cm–1. ESI-MS: m/z (%) = 360.1 [M+ + Na]. ESI-HRMS: m/z calcd for C17H23NO4SNa+ [M+ + Na]: 360.1244; found: 360.1240. Compound 6f: [α]D 26 –31.4 (c 0.77, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 1.22 (s, 9 H), 2.34 (s, 3 H), 3.51 (d, 1 H, J = 6.8 Hz), 3.61–3.68 (m, 1 H), 4.37–4.51 (m, 3 H), 5.29 (d, 1 H, J = 2.4 Hz), 6.28 (d, 1 H, J = 2.4 Hz), 7.18 (d, 4 H, J = 6.0 Hz) ppm. 13C NMR (100 MHz, CDCl3): δ = 21.1, 22.7, 43.8, 56.7, 62.5, 67.8, 125.2, 127.3, 129.9, 134.9, 136.3, 138.6, 170.3 ppm. FTIR (KBr): ν = 3424, 2924, 1767, 1658, 1452, 1402, 1365, 1268, 1132, 1043, 949, 817, 728, 678, 630, 568 cm–1. ESI-MS: m/z (%) = 344.1 [M+ + Na]. ESI-HRMS: m/z calcd for C17H23NO3SNa+ [M+ + Na]: 344.1297; found: 344.1291. Compound 6g: [α]D 26 –33.7 (c 0.79, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 1.23 (s, 9 H), 3.67 (d, 1 H, J = 6.8 Hz), 3.75–3.80 (m, 1 H), 4.46–4.54 (m, 2 H), 4.68 (t, 1 H, J = 6.8 Hz), 5.25 (d, 1 H, J = 2.0 Hz), 6.26 (d, 1 H, J = 2.0 Hz), 7.45–7.54 (m, 3 H), 7.74 (s, 1 H), 7.83–7.90 (m, 3 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 22.7, 43.9, 56.8, 63.1, 67.8, 124.7, 125.4, 126.7, 126.8, 126.8, 127.8, 128.1, 129.4, 133.1, 133.2, 134.9, 136.6, 170.3 ppm. FTIR (KBr): ν = 3404, 3103, 2961, 2920, 1767, 1656, 1402, 1364, 1280, 1132, 1205, 945, 819, 750, 687, 475 cm–1. ESI-MS: m/z (%) = 380.1 [M+ + Na]. ESI-HRMS: m/z calcd for C20H23NO3SNa+ [M+ + Na]: 380.1301; found: 380.1291. Compound 6h: [α]D 26 –164.2 (c 0.85, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 1.21 (s, 9 H), 3.57 (d, 1 H, J = 8.4 Hz), 3.65–3.69 (m, 1 H), 4.34–4.51 (m, 2 H), 4.54 (dd, 1 H, J = 6.8, 8.8 Hz), 5.36 (d, 1 H, J = 2.4 Hz), 6.34 (d, 1 H, J = 2.4 Hz), 6.36–6.40 (m, 2 H), 7.41 (d, 1 H, J = 0.8 Hz) ppm. 13C NMR (100 MHz, CDCl3): δ = 22.6, 42.9, 56.9, 57.4, 67.5, 109.2, 110.9, 125.0, 134.7, 142.8, 152.1, 170.1 ppm. FTIR (KBr): ν = 3445, 1755, 1258, 1143, 1037, 798, 595 cm–1. ESI-MS: m/z (%) = 320.1 [M+ + Na]. ESI-HRMS: for C14H19NO4SNa+ [M+ + Na]: 320.0937; found: 320.0927. Compound 6i: [α]D 26 –66.8 (c 1.19, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 1.24 (s, 9 H), 3.32 (d, 1 H, J = 6.8 Hz), 3.48–3.55 (m, 1 H), 4.20 (dd, 1 H, J = 6.0, 12.0 Hz), 4.27–4.49 (m, 2 H), 5.81 (d, 1 H, J = 2.0 Hz), 6.10–6.15 (m, 1 H), 6.43 (d, 1 H, J = 2.4 Hz), 6.70 (d, 1 H, J = 16.0 Hz), 7.28–7.38 (m, 5 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 22.8, 42.9, 56.7, 61.2, 67.3, 125.0, 126.3, 126.8, 128.5, 128.7, 134.7, 135.0, 135.6, 170.3 ppm. FT-IR (KBr): ν = 3409, 3137, 2960, 2921, 2867, 1759, 1663, 1473, 1449, 1367, 1292, 1261, 1121, 1027, 960, 947, 814, 756, 696 cm–1. ESI-MS: m/z (%) = 356.2 [M+ + Na]. ESI-HRMS: m/z calcd for C18H23NO3SNa+ [M+ + Na]: 356.1287; found: 356.1291. Compound 6j: [α]D 26 –23.1 (c 1.04, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 1.18 (s, 9 H), 1.88–1.94 (m, 2 H), 2.74–2.90 (m, 2 H), 3.07 (d, 1 H, J = 6.0 Hz), 3.24–3.29 (m, 1 H), 3.52–3.58 (m, 1 H), 4.18–4.38 (m, 2 H), 5.69 (d, 1 H, J = 2.0 Hz), 6.38 (d, 1 H, J = 2.8 Hz), 7.20–7.33 (m, 5 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 22.7, 31.9, 35.4, 43.4, 56.5, 58.8, 66.5, 124.4, 126.4, 128.5, 128.7, 135.8, 140.5, 170.4 ppm. FTIR (KBr): ν = 3409, 3144, 2954, 2922, 2865, 1757, 1664, 1473, 1416, 1366, 1301, 1258, 1124, 1012, 954, 817, 751, 703 cm–1. ESI-MS: m/z (%) = 358.1 [M+ + Na]. ESI-HRMS: m/z calcd for C18H25NO3SNa+ [M+ + Na]: 358.1443; found: 358.1447.