Synlett 2013; 24(15): 2021-2022
DOI: 10.1055/s-0033-1339685
spotlight
© Georg Thieme Verlag Stuttgart · New York

Toluenesulfonyl Cyanide (TsCN)

Xiang Fei
Department of Chemistry, University of Nebraska, Lincoln, ­Nebraska 68588-0304, USA   Email: xfei@huskers.unl.edu
› Author Affiliations
Further Information

Publication History

Publication Date:
21 August 2013 (online)

Introduction

Toluenesulfonyl cyanide (TsCN) is a convenient and versatile cyanide source that has great potential in organic synthesis. It displays useful reactivity for electrophilic cyanation of aromatic compounds,[1] carbonyl compounds,[2] and other types of organic compounds.[3] It has been used in radical-mediated cyanation[4] and hydrocyanation[5] reactions. Furthermore, TsCN has been reported to be a good component for [4+2][6] and [3+2][7] cycloaddition reactions. The sulfonyl tetrazoles produced from 1,3-dipolar cycloaddition of TsCN with azides can be further elaborated using nucleophilic aromatic substitution (SNAr). This two-step process represents an interesting ligation strategy that probably warrants greater exploration in chemical biology.[8] Other uses of TsCN in the recent literature include reactions with allylic alcohols to make allyl sulfones,[9] and palladium-catalyzed C–H activation of arenes to synthesize diaryl sulfides.[10]

TsCN is a white crystalline solid (mp 49–50 °C) that is available from dozens of commercial sources. It can be readily prepared in the lab by several methods (Scheme [1]).[11] Compared to other commonly used CN+ equivalents, such as cyanogen bromide [LD50 (rats, orally) = 25–50 mg/kg],[12] TsCN is less toxic [LD50 (rats, orally) = 800–1000 mg/kg][13] and has a longer shelf life. Hence, TsCN will likely continue to serve as an important and versatile reagent for ­organic synthesis.

Zoom Image
Scheme 1 Cox and Ghosh’s synthesis of toluenesulfonyl cyanide[11b]
 
  • References

  • 1 Piller FM, Knochel P. Org. Lett. 2009; 11: 445
    • 2a Akula R, Xiong Y, Ibrahim H. RSC Adv. 2013; 3: 10731
    • 2b Ankner T, Friden-Saxin M, Pemberton N, Seifert T, Grotli M, Luthman K, Hilmersson G. Org. Lett. 2010; 12: 2210
  • 3 Nolin KA, Ahn RW, Kobayashi Y, Kennedy-Smith JJ, Toste FD. Chem.–Eur. J. 2010; 16: 9555
  • 4 Kamijo S, Hoshikawa T, Inoue M. Org. Lett. 2011; 13: 5928
    • 5a Gaspar B, Carreira EM. Angew. Chem. Int. Ed. 2007; 46: 4519
    • 5b Schaffner AP, Darmency V, Renaud P. Angew. Chem. Int. Ed. 2006; 45: 5847
  • 6 Hussain I, Yawer MA, Lalk M, Lindequist U, Villinger A, Fischer C, Langer P. Bioorg. Med. Chem. 2008; 16: 9898
    • 7a Demko ZP, Sharpless KB. Angew. Chem. Int. Ed. 2002; 41: 2110
    • 7b Bosch L, Vilarrasa J. Angew. Chem. Int. Ed. 2007; 46: 3926
    • 8a Aldhoun M, Massi A, Dondoni A. J. Org. Chem. 2008; 73: 9565
    • 8b Dondoni A, Marra A. Tetrahedron 2007; 63: 6339
  • 9 Reddy LR, Hu B, Prashad M, Prasad K. Angew. Chem. Int. Ed. 2009; 48: 172
  • 10 Anbarasan P, Neumann H, Beller M. Chem. Commun. 2011; 47: 3233
    • 11a Van Leuse AM, Iedema AJ. W, Strating J. Chem. Commun. 1968; 440
    • 11b Cox JM, Ghosh R. Tetrahedron Lett. 1969; 39: 3351
    • 11c Pews RG, Corson FP. Chem. Commun. 1969; 1187
  • 12 Cyanogen Bromide HSDB 708, Hazardous Substances Data Bank (HSDB in http://toxnet.nlm.nih.gov) [accessed 15 August 2013].
  • 13 Cox JM, Ghosh RD. E. Patent 1930014A, 1969