Synlett 2014; 25(1): 64-68
DOI: 10.1055/s-0033-1340014
letter
© Georg Thieme Verlag Stuttgart · New York

Nickel-Catalyzed Oxidative Cyclotrimerization of α-Amino Ketones: Selective Synthesis of Pyrazoles

Ri-Yuan Tang
a   State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. of China   Fax: +86(731)88713642   Email: jhli@hnu.edu.cn   Email: jnxiang@hnu.edu.cn
b   College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. of China
,
Xiao-Kang Guo
b   College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. of China
,
Ming Hu
a   State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. of China   Fax: +86(731)88713642   Email: jhli@hnu.edu.cn   Email: jnxiang@hnu.edu.cn
,
Zhi-Qiang Wang
a   State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. of China   Fax: +86(731)88713642   Email: jhli@hnu.edu.cn   Email: jnxiang@hnu.edu.cn
,
Jian-Nan Xiang*
a   State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. of China   Fax: +86(731)88713642   Email: jhli@hnu.edu.cn   Email: jnxiang@hnu.edu.cn
,
Jin-Heng Li*
a   State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. of China   Fax: +86(731)88713642   Email: jhli@hnu.edu.cn   Email: jnxiang@hnu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 18 July 2013

Accepted after revision: 22 September 2013

Publication Date:
05 November 2013 (online)


Abstract

A new strategy for the synthesis of 3-methylene-2,3-dihydro-1H-pyrazoles is presented by Ni-catalyzed oxidative cyclotrimerization of α-amino ketones. This unprecedented method allows three α-amino ketones to undergo sequential multiple deprotonations and deamination through two C–C bonds and one N–N bond formation cascade.

Supporting Information

 
  • Reference and Notes

    • 1a Chemistry and Biochemistry of the Amino Acids. Barrett GC. Chapman and Hall; London: 1985
    • 1b Williams RM. Synthesis of Optically Active α-Amino Acids; Organic Chemistry Series. Pergamon; New York: 1989
    • 1c Ohfune Y. Acc. Chem. Res. 1992; 25: 360
    • 1d Gellman SH. Acc. Chem. Res. 1998; 31: 173
    • 1e Klingler FD. Acc. Chem. Res. 2007; 40: 1367
    • 1f Concellon JM, Rodriguez-Solla H. Curr. Org. Chem. 2008; 12: 524
    • 2a Obrecht D, Altorfer M, Lehmann C, Schönholzer P, Müller K. J. Org. Chem. 1996; 61: 4080
    • 2b Obrecht D, Bohdal U, Broger C, Bur D, Lehmann C, Ruffieux R, Schönholzer P, Spiegler C, Müller K. Helv. Chim. Acta 1995; 78: 563
    • 2c Schoepp DD, Jane DE, Monn JA. Neuropharmacology 1999; 38: 1431
    • 2d Takahashi A, Naganawa H, Ikeda D, Okami Y. Tetrahedron 1991; 47: 3621
    • 2e Schirlin D, Gerhart F, Hornsperger JM, Hamon M, Wagner J, Jung MJ. J. Med. Chem. 1988; 31: 30
    • 2f Walsh JJ, Metzler DE, Powell D, Jacobson RA. J. Am. Chem. Soc. 1980; 102: 7136
    • 2g Beenen MA, Weix DJ, Ellman JA. J. Am. Chem. Soc. 2006; 128: 6304
    • 2h Zhao L, Li C.-J. Angew. Chem. Int. Ed. 2008; 47: 7075
    • 3a Pal D, Saha S, Singh S. Int. J. Pharm. Pharm. Sci. 2012; 4: 98
    • 3b Secci D, Bolasco A, Chimenti P, Carradori S. Curr. Med. Chem. 2011; 18: 5114
    • 3c Bekhit AA, Hymete A, Bekhit AE.-D. A, Damtew A, Aboul-Enein HY. Mini-Rev. Med. Chem. 2010; 10: 1014
    • 3d Viciano-Chumillas M, Tanase S, de Jongh LJ, Reedijk J. Eur. J. Inorg. Chem. 2010; 3403
    • 3e Perez J, Riera L. Eur. J. Inorg. Chem. 2009; 4913
    • 3f Ojwach SO, Darkwa J. Inorg. Chim. Acta 2010; 363: 1947
    • 3g Kumar S, Bawa S, Drabu S, Kumar R, Gupta H. Rec. Patents on Anti-Infect. Drug Discov. 2009; 4: 154
    • 3h Lamberth C. Heterocycles 2007; 71: 1467
    • 3i Elguero J, Goya P, Jagerovic N, Silva AM. S. Targets Heterocycl. Syst. 2002; 6: 52
    • 3j Mukherjee R. Coord. Chem. Rev. 2000; 203: 151

      For reviews, see:
    • 4a Fustero S, Sanchez-Rosello M, Barrio P, Simon-Fuentes A. Chem. Rev. 2011; 111: 6984
    • 4b El-Saghier AM, Abdel-Ghany H, Mohamed MA, Younes SH. Trends Org. Chem. 2011; 15: 1
    • 4c Schmidt A, Dreger A. Curr. Org. Chem. 2011; 15: 2897
    • 4d Dadiboyena S, Nefzi A. Eur. J. Med. Chem. 2011; 46: 5258
    • 4e Yoon J.-Y, Lee S.-G, Shin H. Curr. Org. Chem. 2011; 15: 657
    • 4f Janin YL. Mini-Rev. Org. Chem. 2010; 7: 314
    • 4g Makino K, Kim HS, Kurasawa Y. J. Heterocycl. Chem. 1998; 35: 489
    • 4h Elnagdi MH, Elgemeie GE. H, Abd-Elaal FA. E. Heterocycles 1985; 23: 3121
    • 4i Kost AN, Grandberg II. Adv. Heterocycl. Chem. 1966; 6: 347
    • 4j Janin YL. Chem. Rev. 2012; 112: 3924

      For representative papers, see:
    • 5a Knorr L. Ber. 1883; 16: 2587
    • 5b Kempson J. Knorr Pyrazole Synthesis. In Name Reactions in Heterocyclic Chemistry II. Li JJ. Wiley; New York: 2011: 317-326
    • 5c Huang YR, Katzenellenbogen JA. Org. Lett. 2000; 2: 2833
    • 5d Katritzky AR, Wang M, Zhang S, Voronkov MV, Steel PJ. J. Org. Chem. 2001; 66: 6787
    • 5e Heller ST, Natarajan SR. Org. Lett. 2006; 8: 2675
    • 5f Shen L, Cao S, Liu N, Wu J, Zhu L, Qian X. Synlett 2008; 1341
    • 5g Fustero S, Roman R, Sanz-Cervera JF, Simon-Fuentes A, Bueno J, Villanova S. J. Org. Chem. 2008; 73: 8545
    • 5h Meng L, Lorsbach BA, Sparks TC, Fettinger JC, Kurth MJ. J. Comb. Chem. 2010; 12: 129
    • 5i Garcia H, Iborra S, Miranda MA. Heterocycles 1991; 32: 1745
    • 5j Grotjahn DB, Van S, Combs D, Lev DA, Schneider C, Rideout M, Meyer C, Hernandez G, Mejorado L. J. Org. Chem. 2002; 67: 9200
    • 5k Bishop BC, Brands KM. J, Gibb AD, Kennedy DJ. Synthesis 2004; 43
    • 5l Dastrup DM, Yap AH, Weinreb SM, Henryb JR, Lechleiter AJ. Tetrahedron 2004; 60: 901
    • 5m Smith CD, Tchabanenko K, Adlington RM, Baldwin JE. Tetrahedron Lett. 2006; 47: 3209
    • 5n Liu HL, Jiang HF, Zhang M, Yao WJ, Zhu QH, Tang Z. Tetrahedron Lett. 2008; 49: 3805

      For representative papers, see:
    • 6a von Pechmann H. Ber. Dtsch. Chem. Ges. 1898; 31: 2950
    • 6b Padwa A. 1,3-Dipolar Cycloaddition Chemistry. Vol. I. John Wiley & Sons; New York: 1984
    • 6c Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products. Padwa A, Pearson WH. John Wiley & Sons; New York: 2002
    • 6d Mullins RJ. Pechmann Pyrazole Synthesis in Name Reactions in Heterocyclic Chemistry II. Li JJ. Wiley; New York: 2011: 327-336
    • 6e Nakano Y, Hamaguchi M, Nagai T. J. Org. Chem. 1989; 54: 5912
    • 6f Foti F, Grassi G, Risitano F. Tetrahedron Lett. 1999; 40: 2605
    • 6g Aggarwal VK, de Vicente J, Bonnert RV. J. Org. Chem. 2003; 68: 5381
    • 6h Deng X, Mani NS. Org. Lett. 2006; 8: 3505
    • 6i Hari Y, Tsuchida S, Sone R, Aoyama T. Synthesis 2007; 3371
    • 6j Deng X, Mani NS. J. Org. Chem. 2008; 73: 2412
    • 6k Zora M, Kivrak A. J. Org. Chem. 2011; 76: 9379
    • 6l Liang JT, Deng X, Mani NS. Org. Process Res. Dev. 2011; 15: 876
    • 6m Xu X, Zavalij PY, Hu W, Doyle MP. J. Org. Chem. 2013; 78: 1583

      For representative papers, see:
    • 7a Felding J, Kristensen J, Bjerregaard T, Sander L, Vedsø P, Begtrup M. J. Org. Chem. 1999; 64: 4196
    • 7b Antilla JC, Baskin JM, Barder TE, Buchwald SL. J. Org. Chem. 2004; 69: 5578
    • 7c Cristau H.-J, Cellier PP, Spindler J.-F, Taillefer M. Eur. J. Org. Chem. 2004; 695
    • 7d Mukherjee A, Sarkar A. Tetrahedron Lett. 2004; 45: 9525
    • 7e Zhu L, Guo P, Li G, Lan J, Xie R, You J. J. Org. Chem. 2007; 72: 8535
    • 7f Xi Z, Liu F, Zhou Y, Chen W. Tetrahedron 2008; 64: 4254
    • 7g McLaughlin M, Marcantonio K, Chen CY, Davies IW. J. Org. Chem. 2008; 73: 4309
    • 7h Despotopoulou C, Klier L, Knochel P. Org. Lett. 2009; 11: 3326
    • 7i Goikhman R, Jacques TL, Sames D. J. Am. Chem. Soc. 2009; 131: 3042
    • 7j Deng X, Roessler A, Brdar I, Faessler R, Wu J, Sales ZS, Mani NS. J. Org. Chem. 2011; 76: 8262
  • 8 To our knowledge, only one paper has been reported on the synthesis of tetrasubstituted pyrazoles from the Cu-mediated reaction of enaminones with nitriles using the oxidative strategy, in which 1.5–6 equiv of Cu(OAc)2 were used as both a Lewis acid activator and as an oxidizing agent, and two new bonds, a C–C bond and a C–N bond, were formed; see: Neumann JJ, Suri M, Glorius F. Angew. Chem. Int. Ed. 2010; 49: 7790

    • Although few papers on the N–N single bond oxidative formations have been reported, Ni-catalyzed oxidative formation of the N–N single bond remains an unexploited area. LDA/O2:
    • 9a Barbieri A, Montevecchi PC, Nanni D, Navacchia ML. Tetrahedron 1996; 52: 13255

    • Cu/air:
    • 9b Kauffmann T, Sahm W. Angew. Chem. Int. Ed. 1967; 6: 85
    • 9c Kauffmann T, Albrecht J, Berger D, Legler J. Angew. Chem. Int. Ed. 1967; 6: 633
    • 9d Ueda S, Nagasawa H. J. Am. Chem. Soc. 2009; 131: 15080

    • PbO2 or KMnO4:
    • 9e Wieland H, Gambarjan S. Ber. 1906; 39: 1499
    • 9f Windaus A. Ann. Chem. 1957; 604: 251

    • PhI(III)(CF3CO2)2:
    • 9g Correa A, Tellitu I, Domínguez E, SanMartin R. J. Org. Chem. 2006; 71: 3501

    • Iron(IV)-Oxo complex:
    • 9h Nehru K, Jang YK, Seo MS, Nam W, Kim J. Bull. Korean Chem. Soc. 2007; 28: 843

    • NO2:
    • 9i Naimi-Jamal MR, Hamzeali H, Mokhtari J, Boy J, Kaupp G. ChemSusChem 2009; 2: 83
  • 10 Typical Experimental Procedure for the Ni-Catalyzed Cyclotrimerization of α-Amino Arylketones: To a Schlenk tube were added α-amino arylketones 1 (0.3 mmol), (C5H5)Ni(II)Cl(PPh3) (5 mol%), PhCOOH (1 equiv) and DCE (CH2ClCH2Cl, 2 mL). Then the tube was sealed under air and stirred at 80 °C (the temperature of the heating bath) for the indicated time until complete consumption of the starting material as monitored by TLC and GC–MS analysis. After the reaction was finished, the reaction mixture was diluted with Et2O, filtered by a short crude silica gel column and concentrated in vacuum, and the resulting residue was purified by silica gel column chromatography (hexane–EtOAc) to afford the desired product 2. (Z)-(5-Benzylidene-1,2-diphenyl-2,5-dihydro-1H-pyrazole-3,4-diyl)bis(phenylmethanone) (2a): Yellow solid: 38.9 mg, 75% yield; mp 190.2–191.5 °C (uncorrected). 1H NMR (500 MHz, CDCl3): δ = 8.11 (d, J = 7.4 Hz, 1 H), 7.47 (t, J = 7.7 Hz, 1 H), 7.21–7.32 (m, 13 H), 7.09 (td, J = 7.3, 4.0 Hz, 7 H), 6.92–6.95 (m, 2 H), 6.59–6.62 (d, J = 8.5 Hz, 2 H). 13C NMR (125 MHz, CDCl3): δ = 191.9, 186.3, 144.0, 139.1, 138.7, 136.8, 132.6, 132.5, 131.4, 131.2, 130.9, 129.2, 128.7, 128.1, 127.9, 127.7, 127.5, 127.4, 127.0, 126.9, 126.8, 126.6, 125.3, 122.8, 120.0, 114.2. IR (neat): 1715, 1593, 1448, 1363, 1223, 958, 804, 736, 690 cm–1. LRMS (EI, 70 eV): m/z (%) = 518 [M+] (100), 295 (94). HRMS (ESI): m/z [M + H]+ calcd for C36H26N2O2: 519.2067; found: 519.2089.
    • 11a Fanshawe WJ, Bauer VJ, Safir SR. J. Med. Chem. 1972; 15: 980
    • 11b Ernst GE, Frietze WE, Simpson TR. PCT Int. Appl WO2006068591, 2006 ; Chem. Abstr., 2006, 145, 103669
  • 12 See the data in detail in Supporting Information (Figures S1 and S2 and Schemes S1 and S2).

    • For paper on the effect of a hydrogen donor (such as benzoic acid), see:
    • 13a Ren H, Wulff WD. J. Am. Chem. Soc. 2011; 133: 5656
    • 13b Ren H, Wulff WD. Org. Lett. 2013; 15: 242
    • 13c Azap C, Rueping M. Angew. Chem. Int. Ed. 2006; 45: 7832
    • 13d Zheng L.-S, Li L, Yang K.-F, Zheng Z.-J, Xiao X.-Q, Xu L.-W. Tetrahedron 2013; 69: 8777