Synlett 2013; 24(18): 2370-2374
DOI: 10.1055/s-0033-1340087
letter
© Georg Thieme Verlag Stuttgart · New York

Photocontrol of Electrical Conductance with a Nonsymmetrical Azobenzene Dithiol

Tal Ely
a  Department of Materials and Interfaces, Weizmann Institute of Science, 76100 Rehovot, Israel   Fax: +972(8)9344138   Email: ayelet.vilan@weizmann.ac.il
,
Sanjib Das
b  Department of Organic Chemistry, Weizmann Institute of Science, 76100 Rehovot, Israel, Fax: +972(8)9344142   Email: rafal.klajn@weizmann.ac.il
,
Wenjie Li
a  Department of Materials and Interfaces, Weizmann Institute of Science, 76100 Rehovot, Israel   Fax: +972(8)9344138   Email: ayelet.vilan@weizmann.ac.il
,
Pintu K. Kundu
b  Department of Organic Chemistry, Weizmann Institute of Science, 76100 Rehovot, Israel, Fax: +972(8)9344142   Email: rafal.klajn@weizmann.ac.il
,
Einat Tirosh
a  Department of Materials and Interfaces, Weizmann Institute of Science, 76100 Rehovot, Israel   Fax: +972(8)9344138   Email: ayelet.vilan@weizmann.ac.il
,
David Cahen
a  Department of Materials and Interfaces, Weizmann Institute of Science, 76100 Rehovot, Israel   Fax: +972(8)9344138   Email: ayelet.vilan@weizmann.ac.il
,
Ayelet Vilan*
a  Department of Materials and Interfaces, Weizmann Institute of Science, 76100 Rehovot, Israel   Fax: +972(8)9344138   Email: ayelet.vilan@weizmann.ac.il
,
Rafal Klajn*
b  Department of Organic Chemistry, Weizmann Institute of Science, 76100 Rehovot, Israel, Fax: +972(8)9344142   Email: rafal.klajn@weizmann.ac.il
› Author Affiliations
Further Information

Publication History

Received: 30 July 2013

Accepted after revision: 14 October 2013

Publication Date:
22 October 2013 (online)


Abstract

We report a method for preparing electrode–molecule–electrode junctions that incorporate nonsymmetrical azobenzene dithiols. Our approach is based on sequential deprotection of thiol moieties originally carrying two different protecting groups. The azobenzene derivatives retained their switching properties within monolayers and permitted the photocontrol of electrical conductance.

Supporting Information

 
  • References and Notes

  • 1 Present address: Dept. of Colloids & Materials Chemistry, CSIR-Institute of Minerals & Materials Technology, Odisha, India.
  • 2 Special issue on Gated Systems for Multifunctional Optoelectronic Devices, Adv. Mater. (Weinheim, Ger.), 2013, 25, 293.
  • 3 Irie M. Chem. Rev. 2000; 100: 1685
  • 4 Klajn R. Pure Appl. Chem. 2010; 82: 2247
  • 5 Klajn R.; Chem. Soc. Rev.; 2013, 42: in press; DOI: 10.1039/C3CS60181A.
  • 6 van der Molen SJ, Liljeroth P. J. Phys.: Condens. Matter 2010; 22: 133001
  • 7 Yasuda S, Nakamura T, Matsumoto M, Shigekawa H. J. Am. Chem. Soc. 2003; 125: 16430
  • 8 Kumar AS, Ye T, Takami T, Yu B.-C, Flatt AK, Tour JM, Weiss PS. Nano Lett. 2008; 8: 1644
  • 9 Wen Y, Yi W, Meng L, Feng M, Jiang G, Yuan W, Zhang Y, Gao H, Jiang L, Song Y. J. Phys. Chem. B 2005; 109: 14465
  • 10 Zhang X, Wen Y, Li Y, Li G, Du S, Guo H, Yang L, Jiang L, Gao H, Song Y. J. Phys. Chem. C 2008; 112: 8288
  • 11 Smaali K, Lenfant S, Karpe S, Oçafrain M, Blanchard P, Deresmes D, Godey S, Rochefort A, Roncali J, Vuillaume D. ACS Nano 2010; 4: 2411
  • 12 Ferri V, Elbing M, Pace G, Dickey MD, Zharnikov M, Samori P, Mayor M, Rampi MA. Angew. Chem. Int. Ed. 2008; 47: 3407
  • 13 Karpe S, Oçafrain M, Smaali K, Lenfant S, Vuillaume D, Blanchard P, Roncali J. Chem. Commun. 2010; 46: 3657
  • 14 Mativetsky JM, Pace G, Elbing M, Rampi MA, Mayor M, Samori P. J. Am. Chem. Soc. 2008; 130: 9192
  • 15 Zhang C, Du MH, Cheng HP, Zhang XG, Roitberg AE, Krause JL. Phys. Rev. Lett. 2004; 92: 158301
  • 16 del Valle M, Gutiérrez R, Tejedor C, Cuniberti G. Nat. Nanotechnol. 2007; 2: 176
  • 17 Zotti LA, Kirchner T, Cuevas J.-C, Pauly F, Huhn T, Scheer E, Erbe A. Small 2010; 6: 1529
  • 18 Salomon A, Cahen D, Lindsay S, Tomfohr J, Engelkes VB, Frisbie CD. Adv. Mater. (Weinheim, Ger.) 2003; 15: 1881
  • 19 Akkerman HB, de Boer B. J. Phys.: Condens. Matter 2008; 20: 013001
  • 20 Akkerman HB, Kronemeijer AJ, van Hal PA, de Leeuw DM, Blom PW. M, de Boer B. Small 2008; 4: 100
  • 21 S-{3-[(4-Hydroxyphenyl)diazenyl]phenyl} Ethanethioate (7) In a round-bottomed flask, disulfide 4 (306 mg; 1.5 mmol) was dissolved in H2O (3 mL). 1.0 M aq HCl (3.3 mL) was added, and the mixture was cooled to 0 °C. In a separate flask, a solution of NaNO2 (108 mg; 1.56 mmol) in H2O (5 mL) was cooled to 0 °C. The cold NaNO2 solution was then added at once to the cooled solution of disulfide 4. The resulting mixture was stirred for 5 min at 0 °C and then added dropwise to a solution of PhOH (149 mg; 1.58 mmol) and NaOAc (247 mg; 3.01 mmol) in H2O (5 mL) cooled to 0 °C. After the addition was completed, the mixture was stirred for an additional 5 h at 0 °C. The ice bath was then removed, and the mixture was stirred for an additional 14 h at r.t. The resulting yellow precipitate was collected by filtration, dried under reduced pressure, and purified by column chromatography (silica gel, 5% EtOAc–CH2Cl2) to give a brownish solid; yield: 222 mg (54%). 1H NMR (300 MHz, CDCl3): δ = 7.93–7.89 (m, 2 H), 7.82 (d, J = 8.9 Hz, 2 H), 7.58–7.46 (m, 2 H), 6.88 (d, J = 8.9 Hz, 2 H), 5.59 (s, 1 H), 2.48 (s, 3 H). 13C NMR (125 MHz, CDCl3): δ = 194.77, 159.15, 152.75, 146.59, 136.02, 129.84, 128.71, 127.95, 125.43 (2 C), 124.32, 115.91 (2 C), 30.32. HRMS (ESI): m/z [M + Na]+ calcd for C14H12N2NaO2S: 295.0520; found = 295.0517.
  • 22 S,S′-{Disulfanediylbis[undecane-11,1-diyloxy-4,1-phenylenediazene-2,1-diyl-3,1-phenylene]} Diethanethioate (1) A two-necked round-bottomed flask was charged with hydrochloride 5 (136 mg; 0.49 mmol), K2CO3 (179 mg; 1.29 mmol), and DMF (3 mL) under N2, and the mixture was stirred for 15 min at r.t. Alcohol 3 (115 mg; 0.21 mmol) and KI (5 mg) were then added, and the mixture was stirred at 60 °C for 12 h. The mixture was then cooled to r.t. and H2O (50 mL) was added. The yellow precipitate that formed was extracted into CH2Cl2 (3 × 20 mL). The organic phase was washed with water (3 × 20 mL), dried (MgSO4), and concentrated under reduced pressure to give a yellow solid. The crude product was purified by column chromatography (silica gel, 2% EtOAc–CH2Cl2) to give a orange solid; yield: 125 mg (63%). 1H NMR (300 MHz, CDCl3): δ = 7.95 (d, J = 8.7 Hz, 4 H), 7.84 (s, 2 H), 7.71–7.67 (m, 2 H), 7.42–7.40 (m, 4 H), 7.25 (d, J = 8.7 Hz, 4 H), 3.00 (t, J = 7.2 Hz, 4 H), 2.67 (t, J = 7.2 Hz, 4 H), 2.34 (s, 6 H), 1.69–1.66 (m, 8 H), 1.46–1.23 (m, 28 H). 13C NMR (75 MHz, CDCl3): δ = 169.10, 152.74, 150.11, 138.69, 130.77, 129.34, 124.13 (2 C), 122.24 (3 C), 121.97, 120.43, 39.13, 33.24, 29.69, 29.47, 29.45, 29.20, 29.18, 29.13, 28.96, 28.82, 28.49, 21.18. MS (ESI): m/z (%) = 937.29 (81) [M + Na]+, 915.23 (100) [M + H]+, 751.13 (60), 729.13 (67), 301.04 (31).
  • 23 Diluting azobenzene-terminated alkanethiols with ‘background’ alkanethiols in a 1:1 ratio enables efficient isomerization of azobenzene in the resulting SAMs: see Refs. 24 and 25.
  • 24 Akiyama H, Tamada K, Nagasawa J, Abe K, Tamaki T. J. Phys. Chem. B 2003; 107: 130
  • 25 Valley DT, Onstott M, Malyk S, Benderskii AV. Langmuir 2013; 29: 11623
  • 26 Klajn R, Bishop KJ. M, Grzybowski BA. Proc. Natl. Acad. Sci. U.S.A. 2007; 104: 10305
  • 27 Zhang J, Whitesell JK, Fox MA. Chem. Mater. 2001; 13: 2323
  • 28 Alemani M, Peters MV, Hecht S, Rieder K.-H, Moresco F, Grill L. J. Am. Chem. Soc. 2006; 128: 14446
  • 29 Photoisomerization under these conditions can be accompanied by a partial degradation of the SAM. To reduce the extent of photodegradation, SAMs exposed to UV were immersed in deoxygenated hexadecane.
  • 30 Ulman A. Chem. Rev. 1996; 96: 1533
  • 31 Klajn R, Wesson PJ, Bishop KJ. M, Grzybowski BA. Angew. Chem. Int. Ed. 2009; 48: 7035
  • 32 Chovnik O, Balgley R, Goldman JR, Klajn R. J. Am. Chem. Soc. 2012; 134: 19564
  • 33 Bensebaa F, Ellis TH, Badia A, Lennox RB. Langmuir 1998; 14: 2361
  • 34 Mayor M, Weber HB, Reichert J, Elbing M, von Hanisch C, Beckmann D, Fischer M. Angew. Chem. Int. Ed. 2003; 42: 5834
  • 35 Seferos DS, Banach DA, Alcantar NA, Israelachvili JN, Bazan GC. J. Org. Chem. 2004; 69: 1110
  • 36 Cheng L, Yang J, Yao Y, Price DW. Jr, Dirk SM, Tour JM. Langmuir 2004; 20: 1335
  • 37 Lau KH. A, Huang C, Yakovlev N, Chen ZK, O’Shea SJ. Langmuir 2006; 22: 2968
  • 38 Vilan A, Cahen D, Kraisler E. ACS Nano 2013; 7: 695
  • 39 Beebe JM, Kim B, Frisbie CD, Kushmerick JG. ACS Nano 2008; 2: 827
  • 40 Guo S, Hihath J, Díez-Pérez I, Tao N. J. Am. Chem. Soc. 2011; 133: 19189
  • 41 Kim Y, Wang G, Choe M, Kim J, Lee S, Park S, Kim D.-Y, Lee BH, Lee T. Org. Electron. 2011; 12: 2144
  • 42 Zhang C, He Y, Cheng H.-P, Xue Y, Ratner MA, Zhang X.-G, Krstic P. Phys. Rev. B: Condens. Matter Mater. Phys. 2006; 73: 125445