Synlett 2014; 25(08): 1093-1096
DOI: 10.1055/s-0033-1341056
letter
© Georg Thieme Verlag Stuttgart · New York

Catalyst-Free Synthesis of N-(1,7-Dioxotetrahydropyrazolo[1,2-a]pyrazol-2-yl)benzamide Derivatives by 1,3-Dipolar Cycloaddition and Rearrangement

Wenjing Liu
Department of Chemistry and Anhui Key Lab for Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, P. R. of China   Fax: +86(551)63606689   Email: xyu@ustc.edu.cn
,
Yu Xu*
Department of Chemistry and Anhui Key Lab for Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, P. R. of China   Fax: +86(551)63606689   Email: xyu@ustc.edu.cn
,
Xingxia Sun
Department of Chemistry and Anhui Key Lab for Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, P. R. of China   Fax: +86(551)63606689   Email: xyu@ustc.edu.cn
,
Dapeng Lu
Department of Chemistry and Anhui Key Lab for Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, P. R. of China   Fax: +86(551)63606689   Email: xyu@ustc.edu.cn
,
Lijuan Guo
Department of Chemistry and Anhui Key Lab for Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, P. R. of China   Fax: +86(551)63606689   Email: xyu@ustc.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 17 January 2014

Accepted after revision: 02 March 2014

Publication Date:
03 April 2014 (online)


Abstract

N-(1,7-Dioxotetrahydropyrazolo[1,2-a]pyrazol-2-yl)-benzamide derivatives, a novel class of compounds, were synthesized by 1,3-dipolar cycloaddition of azomethine imines with azlactones and subsequent rearrangement. The reaction can be completed rapidly under mild conditions without a catalyst.

Supporting Information

 
  • References


    • For reviews, see:
    • 1a Marchand-Brynaert J, Ghosez L In Recent Progress in the Chemical Synthesis of Antibiotics . Lukacs G, Ohno M. Springer; Berlin: 1990: 727
    • 1b Hanessian S, McNaughton-Smith G, Lombart HG, Lubell WD. Tetrahedron 1997; 53: 12789
    • 1c Kosower EM, Radkowsky AE, Fairlamb AH, Croft SL, Nea RA. Eur. J. Med. Chem. 1995; 30: 659
    • 1d Kosower EM, Hershkowitz E. IL 94658, 1994 ; Chem. Abstr. 1994, 122, 214077.
    • 2a Bialer M, Yagen B, Mechoulam R. J. Med. Chem. 1979; 22: 1296
    • 2b Stien D, Anderson GT, Chase CE, Koh Y.-h, Weinreb SM. J. Am. Chem. Soc. 1999; 121: 9574
    • 2c Lehuédé J, Fauconneau B, Barrier L, Ourakow M, Piriou A, Vierfond J.-M. Eur. J. Med. Chem. 1999; 34: 991
    • 2d Fürstner A. Angew. Chem. Int. Ed. 2003; 42: 3582
    • 2e Harrak Y, Rosell G, Daidone G, Plescia S, Schillaci D, Pujol MD. Bioorg. Med. Chem. 2007; 15: 4876
    • 2f Kim Y, Kim J, Park SB. Org. Lett. 2009; 11: 17

      For recent reviews, see:
    • 3a Elguero J. In Comprehensive Heterocyclic Chemistry II . Vol. 3. Katrizky AR, Rees CW, Scriven EF. V. Chap. 1 Elsevier; Oxford: 1996: 1
    • 3b Gothelf KV, Jørgensen KA. Chem. Rev. 1998; 98: 863
    • 3c Varvounis G, Fiamegos Y, Pilidis G. Adv. Heterocycl. Chem. 2001; 80: 75
    • 3d Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry toward Heterocycles and Natural Products. Padwa A, Pearson WH. Wiley; Hoboken: 2003
    • 3e Eicher T, Hauptmann S. The Chemistry of Heterocycles: Structures, Reactions, Synthesis, and Applications. Wiley-VCH; Weinheim: 2003. 2nd ed.
    • 3f Pellissier H. Tetrahedron 2007; 63: 3235

      For representative examples, see:
    • 4a Gothelf KV, Thomsen I, Jørgensen KA. J. Am. Chem. Soc. 1996; 118: 59
    • 4b Kobayashi S, Kawamura M. J. Am. Chem. Soc. 1998; 120: 5840
    • 4c Kanemasa S, Oderaotoshi Y, Tanaka J, Wada E. J. Am. Chem. Soc. 1988; 120: 12355
    • 4d Simonsen KB, Rita PB, Hazell G, Gothelf KV, Jørgensen KA. J. Am. Chem. Soc. 1999; 121: 3845
    • 4e Desimoni G, Faita G, Mortoni A, Righetti P. Tetrahedron Lett. 1999; 40: 2001
    • 4f Iwasa S, Tsushima S, Shimada T, Nishiyama H. Tetrahedron 2002; 58: 227
    • 4g Hori K, Kodama H, Ohta T, Furukawa I. J. Org. Chem. 1999; 64: 5017
    • 4h Suga H, Kakehi A, Ito S, Sugimoto H. Bull. Chem. Soc. Jpn. 2003; 76: 327
    • 4i Sibi MP, Ma Z, Jasperse CP. J. Am. Chem. Soc. 2004; 126: 718
    • 4j Suga H, Nakajima T, Itoh K, Kakehi A. Org. Lett. 2005; 7: 1431

      For reactions with α,β-unsaturated aldehydes, see:
    • 5a Viton F, Bernardinelli G, Kündig EP. J. Am. Chem. Soc. 2002; 124: 4968
    • 5b Mita T, Ohtsuki N, Ikeno T, Yamada T. Org. Lett. 2002; 4: 2457
    • 5c Shirahase M, Kamenasa S, Oderaotoshi Y. Org. Lett. 2004; 6: 675
    • 5d Carmona D, Lamata MP, Viguri F, Rodríguez R, Oro LA, Balana AI, Lahoz FJ, Tejero T, Merino P, Franco S, Montesa I. J. Am. Chem. Soc. 2004; 126: 2716
    • 5e Kano T, Hashimoto T, Maruoka K. J. Am. Chem. Soc. 2005; 127: 11926
  • 6 Sibi P, Stanley LM, Jasperse CP. J. Am. Chem. Soc. 2005; 127: 8276

    • For selected recent examples of enantioselective cycloadditions of azomethine imines, see:
    • 7a Chen W, Du W, Duan Y.-Z, Wu Y, Yang S.-Y, Chen Y.-C. Angew. Chem. Int. Ed. 2007; 46: 7667
    • 7b Suárez A, Downey W, Fu GC. J. Am. Chem. Soc. 2005; 127: 11244
    • 7c Shintani R, Fu GC. J. Am. Chem. Soc. 2003; 125: 10778
    • 7d Suga H, Funyu A, Kakehi A. Org. Lett. 2007; 9: 97
    • 7e Sibi MP, Rane D, Stanley LM, Soeta T. Org. Lett. 2008; 10: 2971
    • 7f Keller M, Sido AS. S, Pale P, Sommer J. Chem. Eur. J. 2009; 15: 2810
    • 7g Luo N, Zheng Z, Yu Z. Org. Lett. 2011; 13: 3384
    • 7h Na R, Jing C, Xu Q, Jiang H, Wu X, Shi J, Zhong J, Wang M, Benitez D, Tkatchouk E, Goddard WA, Guo H, Kwon O. J. Am. Chem. Soc. 2011; 133: 13337
    • 7i Xu X, Xu X, Zavalij PY, Doyle MP. Chem. Commun. 2013; 49: 2762

      For selected examples, see:
    • 8a Liang J, Ruble JC, Fu GC. J. Org. Chem. 1998; 63: 3154
    • 8b Trost BM, Ariza X. J. Am. Chem. Soc. 1999; 121: 10727
    • 8c Peddibhotla S, Tepe JJ. J. Am. Chem. Soc. 2004; 126: 12776
    • 8d Brekessel A, Cleemann F, Mukherjee SJ, Müller TN, Lex J. Angew. Chem. 2005; 117: 817
    • 8e Melhado AD, Luparia M, Toste FD. J. Am. Chem. Soc. 2007; 129: 12638
    • 8f Fisk JS, Tepe JJ. J. Am. Chem. Soc. 2007; 129: 3058
    • 8g Uraguchi D, Ueki Y, Ooi T. J. Am. Chem. Soc. 2008; 130: 14088
    • 8h Jiang J, Qing J, Gong L.-Z. Chem. Eur. J. 2009; 15: 7031
    • 8i Terada M, Nii H. Chem. Eur. J. 2011; 17: 1760
    • 9a Najera C, Sansano JM. Curr. Org. Chem. 2003; 7: 1105
    • 9b Sansano LM, Sibi MP. Chem. Rev. 2008; 108: 2887
  • 10 N-(1,7-Dioxotetrahydro-1H,5H-pyrazolo[1,2-a]pyrazol-2-yl)benzamides 3ap; General Procedure Azomethine imine 1 (1.2 equiv, 0.24 mmol), azlactone 2 (0.2 mmol), and CH2Cl2 (0.5 mL) were added to a small tube containing a magnetic stirrer, and the mixture were stirred at r.t. for 2–6 h. The crude product was purified by column chromatography [silica gel, EtOAc–PE (1:1)]. N-(3,5-Dioxo-1,2-diphenyltetrahydro-1H,5H-pyrazolo[1,2-a]pyrazol-2-yl)benzamide (3a) White solid; yield: 74.8 mg (91%); mp 191–192 °C; IR (KBr): 3418, 3059, 2929, 2850, 1785, 1676, 1575, 1298, 918, 711 cm–1; 1H NMR (400 MHz, CDCl3): δ = 7.48 (dd, J = 15.3, 7.2 Hz, 5 H), 7.41–7.34 (m, 8 H), 7.24–7.19 (m, 2 H), 6.71 (s, 1 H), 4.77 (s, 1 H), 3.41 (s, 1 H), 3.00–2.81 (m, 3 H); 13C NMR (101 MHz, CDCl3): δ = 165.73, 165.00, 161.93, 135.68, 133.48, 131.83, 131.57, 131.03, 129.47, 128.90, 128.76, 128.71, 128.52, 127.38, 126.86, 126.57, 71.04, 50.17, 35.99; HRMS (ESI): m/z [M + Na]+ calcd for C25H21NaN3O3: 434.1475; found: 434.1468. N-[1-(4-Methoxyphenyl)-3,5-dioxo-2-phenyltetrahydro-1H,5H-pyrazolo[1,2-a]pyrazol-2-yl]benzamide (3b) White solid; yield: 61.5 mg (70%); mp 159–160 °C; IR (KBr): 3413, 3061, 2932, 1783, 1713, 1597, 1503, 1267, 1173, 1045, 916, 835, 716 cm–1; 1H NMR (400 MHz, CDCl3): δ = 7.54 (d, J = 8.4 Hz, 2 H), 7.45 (t, J = 6.9 Hz, 3 H), 7.38–7.33 (m, 5 H), 7.13 (d, J = 8.7 Hz, 2 H), 6.87 (d, J = 8.8 Hz, 2 H), 6.75 (s, 1 H), 4.68 (s, 1 H), 3.78 (s, 3 H), 3.39 (s, 1 H), 2.99–2.84 (m, 3 H); 13C NMR (101 MHz, CDCl3): δ = 190.77, 165.57, 165.10, 160.22, 135.65, 133.49, 131.91, 131.82, 128.68, 128.59, 128.52, 126.90, 126.56, 122.56, 114.28, 114.24, 70.86, 55.52, 55.02, 35.69; HRMS (ESI): m/z [M + Na]+ calcd for C26H23NaN3O4: 464.1581; found: 464.1573. N-[1-(4-Fluorophenyl)-3,5-dioxo-2-phenyltetrahydro-1H,5H-pyrazolo[1,2-a]pyrazol-2-yl]benzamide (3d) White solid; yield: 72.6 mg (85%); mp 195–196 °C; IR (KBr): 3414, 3074, 2922, 2851, 1796, 1714, 1644, 1515, 1292, 1222, 1034, 918, 706 cm–1; 1H NMR (400 MHz, CDCl3): δ = 7.48 (dd, J = 18.5, 7.5 Hz, 5 H), 7.44–7.33 (m, 6 H), 7.25 (d, J = 3.1 Hz, 1 H), 7.05 (t, J = 8.5 Hz, 2 H), 6.67 (s, 1 H), 4.82 (s, 1 H), 3.35 (s, 1 H), 3.01–2.88 (m, 3 H); 13C NMR (101 MHz, CDCl3): δ = 166.67, 165.88, 164.86, 164.39, 136.09, 133.29, 132.03, 129.33, 128.98, 128.93, 128.64, 128.53, 127.84, 127.25, 126.86, 126.41, 71.10, 35.71, 29.67; HRMS (ESI): m/z [M + Na]+ calcd for C25H20FN3NaO3: 452.1381; found: 452.1377. N-[1-(2-Furyl)-3,5-dioxo-2-phenyltetrahydro-1H,5H-pyrazolo[1,2-a]pyrazol-2-yl]benzamide (3l) White solid; yield: 55.2 mg (69%); mp 166–168 °C; IR (KBr): 3424, 2932, 1783, 1713, 1666, 1502, 1314, 904, 730 cm–1; 1H NMR (400 MHz, CDCl3): δ = 7.83 (d, J = 7.1 Hz, 2 H), 7.48–7.31 (m, 10 H), 6.52 (dd, J = 3.2, 0.5 Hz, 1 H), 6.29 (dd, J = 3.3, 1.9 Hz, 1 H), 5.90 (s, 1 H), 3.39–3.34 (m, 1 H), 2.94 (ddd, J = 16.1, 10.9, 9.0 Hz, 1 H), 2.80–2.65 (m, 2 H); 13C NMR (101 MHz, CDCl3): δ = 166.05, 165.50, 163.88, 147.86, 143.87, 135.51, 133.24, 131.71, 128.93, 128.74, 128.39, 126.79, 126.56, 113.92, 110.33, 69.23, 46.41, 35.05; HRMS (ESI): m/z [M + Na]+ calcd for C23H19NaN3O4: 424.1268; found: 424.1261. N-(1-Cyclohexyl-3,5-dioxo-2-phenyltetrahydro-1H,5H-pyrazolo[1,2-a]pyrazol-2-yl)benzamide (3m) White solid; yield: 35.5 mg (91%); mp 141–143 °C; IR (KBr): 3424, 2920, 1713, 1561, 1444, 1279, 1045, 815, 730 cm–1; 1H NMR (400 MHz, CDCl3): δ = 7.80 (d, J = 7.1 Hz, 2 H), 7.65 (d, J = 7.3 Hz, 2 H), 7.55 (t, J = 8.0 Hz, 1 H), 7.44 (d, J = 12.3 Hz, 4 H), 7.37 (t, J = 6.7 Hz, 1 H), 6.70 (s, 1 H), 3.79 (t, J = 8.1 Hz, 1 H), 3.49 (d, J = 7.5 Hz, 1 H), 3.09 (dd, J = 14.8, 6.9 Hz, 1 H), 2.99–2.91 (m, 1 H), 2.71 (dd, J = 16.4, 6.3 Hz, 1 H), 1.99 (d, J = 11.9 Hz, 1 H), 1.79 (d, J = 16.9 Hz, 2 H), 1.66–1.54 (m, 3 H), 1.20–1.06 (m, 5 H); 13C NMR (101 MHz, CDCl3): δ = 166.70, 165.12, 162.50, 138.27, 132.95, 132.24, 129.03, 128.88, 128.80, 127.11, 126.39, 76.06, 69.93, 56.20, 38.88, 35.96, 31.89, 29.89, 25.56; HRMS (ESI): m/z [M + Na]+ calcd for C25H27NaN3O3: 440.1945; found: 440.1950.

    • For recent reviews, see:
    • 11a Enders D, Grondal C, Hüttl MR. M. Angew. Chem. 2007; 119: 1590
    • 11b Grondal C, Jeanty M, Enders D. Nat. Chem. 2010; 2: 167

      For recent examples of Michael additions of the enolate forms of azlactones, see:
    • 12a Alemán J, Milelli A, Cabrera S, Reyes E, Jørgensen KA. Chem. Eur. J. 2008; 14: 10958
    • 12b Cabrera S, Reyes E, Aleman J, Milelli A, Kobbelgaard S, Jørgensen KA. J. Am. Chem. Soc. 2008; 130: 12031
    • 12c Jiang H, Paixão MW, Monge D, Jørgensen KA. J. Am. Chem. Soc. 2010; 132: 2775