Synlett 2014; 25(10): 1458-1460
DOI: 10.1055/s-0033-1341243
letter
© Georg Thieme Verlag Stuttgart · New York

Copper-Catalyzed Aerobic Oxidative C–C Bond Cleavage of 1,3-Diaryl­diketones To Synthesize 1,2-Diketones

Chun Zhang
a   State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing 100191, P. R. of China
,
Xiaoyang Wang
a   State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing 100191, P. R. of China
,
Ning Jiao*
a   State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing 100191, P. R. of China
b   State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. of China   Fax: +86(10)82805297   Email: jiaoning@bjmu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 12 February 2014

Accepted after revision: 25 March 2014

Publication Date:
08 May 2014 (online)


Abstract

An aerobic oxidative C–C bond cleavage of 1,3-diaryldiketones for the synthesis of 1,2-diketones by using O2 as the oxidant has been developed. Control experiments illustrate that the copper catalyst not only assist the aerobic oxidative process of 1,3-diketones, but also catalyze the 1,2-Wagner–Meerwein-type rearrangement process.

Supporting Information

 
  • References and Notes

    • 1a Ita BI, Offiong OE. Mater. Chem. Phys. 2001; 70: 330
    • 1b Husar B, Commereuc S, Lukac I, Chmela S, Nedelec JM, Baba M. J. Phys. Chem. B 2006; 110: 5315
    • 1c Corrales T, Catalina F, Peinado C, Allen NS. J. Photochem. Photobiol. A 2003; 159: 103
    • 2a Deng X, Mani N. Org. Lett. 2006; 8: 269
    • 2b Shipe WD, Yang F, Zhao Z, Wolkenberg SE, Nolt MB, Lindsley CW. Heterocycles 2006; 70: 655
    • 2c Held I, Xu SJ, Zipse H. Synthesis 2007; 1185
    • 2d Boyce GR, Johnson JS. Angew. Chem. Int. Ed. 2010; 49: 8930
    • 2e Rong F, Chow S, Yan S, Larson G, Hong Z, Wu J. Bioorg. Med. Chem. Lett. 2007; 17: 1663
    • 2f McKenna JM, Halley F, Souness JE, McLay IM, Pickett SD, Collis AJ, Page K, Ahmed I. J. Med. Chem. 2002; 45: 2173
    • 2g Singh SK, Saibaba V, Ravikumar V, Rudrawar SV, Daga P, Rao CS, Akhila V, Hegde P, Rao YK. Bioorg. Med. Chem. 2004; 12: 1881
    • 3a Cornell CN, Sigman MS. Inorg. Chem. 2007; 46: 1903
    • 3b Kotov V, Scarborough CC, Stahl SS. Inorg. Chem. 2007; 46: 1910
    • 3c Keith JA, Henry PM. Angew. Chem. Int. Ed. 2009; 48: 9038
    • 3d Ren W, Xia Y, Ji S.-J, Zhang Y, Wan X, Zhao J. Org. Lett. 2009; 11: 1841
    • 3e Chen S, Liu Z, Shi E, Chen L, Wei W, Li H, Cheng Y, Wan X. Org. Lett. 2011; 13: 2274
    • 3f Ren W, Liu J, Chen L, Wan X. Adv. Synth. Catal. 2010; 352: 1424
    • 3g Mori S, Takubo M, Yanase T, Maegawa T, Monguchi Y, Sajiki H. Adv. Synth. Catal. 2010; 352: 1630
    • 5a Tada N, Shomura M, Nakayama H, Miura T, Itoh A. Synlett 2010; 1979
    • 5b Karlsson I, Hillerstrom L, Stenfeldt A.-L, Martensson J, Borje A. Chem. Res. Toxicol. 2009; 22: 1881
    • 5c Kim SS, Mah YJ, Kim AR, Cho KW. J. Photosci. 2004; 11: 129
    • 5d Shimakawa Y, Morikawa T, Sakaguchi S. Tetrahedron Lett. 2010; 51: 1786
    • 5e Suzuki Y, Bakar A, Tanoi T, Nomura N, Sato M. Tetrahedron 2011; 67: 4710
  • 6 Huang LH, Cheng K, Yao BB, Xie YJ, Zhang YH. J. Org. Chem. 2011; 76: 5732
  • 7 Yuan Y, Zhu H. Eur. J. Org. Chem. 2012; 329

    • For some selected reviews about copper-catalyzed aerobic oxidative dehydrogenative coupling reaction in the last three years, see:
    • 8a Wendlandt AE, Suess AM, Stahl SS. Angew. Chem. Int. Ed. 2011; 50: 11062
    • 8b Zhang C, Tang C, Jiao N. Chem. Soc. Rev. 2012; 41: 3464
    • 8c Campbell AN, Stahl SS. Acc. Chem. Res. 2012; 45: 851

      For some selected examples about copper-catalyzed aerobic oxidative dehydrogenative coupling reaction in the last three years, see:
    • 9a Wang H, Wang Y, Liang D, Liu L, Zhang J, Zhu Q. Angew. Chem. Int. Ed. 2011; 50: 5678
    • 9b Wang J, Wang J, Zhu Y, Lu P, Wang Y. Chem. Commun. 2011; 47: 3275
    • 9c Hausser A, Trautmann M, Roduner E. Chem. Commun. 2011; 47: 6954
    • 9d Zhang C, Zhang L, Jiao N. Adv. Synth. Catal. 2012; 354: 1293
    • 9e Liu Q, Wu P, Yang Y, Zeng Z, Liu J, Yi H, Lei A. Angew. Chem. Int. Ed. 2012; 51: 4666
    • 9f Xu Z, Zhang C, Jiao N. Angew. Chem. Int. Ed. 2012; 51: 11367
    • 9g Li X, Huang L, Chen H, Wu W, Huang H, Jiang H. Chem. Sci. 2012; 3: 3463
    • 9h Du F.-T, Ji J.-X. Chem. Sci. 2012; 3: 460
    • 9i Zhang C, Jiao N. Angew. Chem. Int. Ed. 2010; 49: 6174
    • 9j Zhang C, Jiao N. J. Am. Chem. Soc. 2010; 132: 28
    • 9k Zhang C, Xu Z, Zhang L, Jiao N. Angew. Chem. Int. Ed. 2011; 50: 11088
    • 9l Zhang C, Jiao N. Org. Chem. Front. 2014; 1: 109
  • 10 Typical Procedure A reaction mixture of CuBr (3.6 mg, 0.025 mmol), pyridine (10.0 mg, 0.125 mmol), 1,3-diphenylpropane-1,3-dione 1a (56.1 mg, 0.25 mmol) in toluene (2 mL) under O2 (1 atm) was stirred at 100 °C for 24 h. After being cooled to r.t. and concentrated under vacuum, the residue was purified by flash chromatography on a short silica gel (eluent: PE–EtOAc, 40:1) to afford 27 mg (51%) of 2a.
  • 11 Zhang C, Feng P, Jiao N. J. Am. Chem. Soc. 2013; 135: 15257
  • 12 Barbiero G, Kim W.-G, Hay AS. Tetrahedron Lett. 1994; 35: 5833
  • 13 Roberts JD, Smith DR, Lee CC. J. Am. Chem. Soc. 1951; 73: 618