Synlett 2014; 25(10): 1453-1457
DOI: 10.1055/s-0033-1341257
letter
© Georg Thieme Verlag Stuttgart · New York

Aerobic Photooxidative Carbon–Carbon Bond Formation Between Tertiary Amines and Carbon Nucleophiles Using 2-Chloroanthra-9,10-quinone

Tomoaki Yamaguchi
a   Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan   Fax: +81(58)2308108   Email: itoha@gifu-pu.ac.jp
,
Tomoya Nobuta
a   Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan   Fax: +81(58)2308108   Email: itoha@gifu-pu.ac.jp
,
Norihiro Tada
a   Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan   Fax: +81(58)2308108   Email: itoha@gifu-pu.ac.jp
,
Tsuyoshi Miura
b   Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
,
Tatsushi Nakayama
a   Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan   Fax: +81(58)2308108   Email: itoha@gifu-pu.ac.jp
,
Bunji Uno
a   Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan   Fax: +81(58)2308108   Email: itoha@gifu-pu.ac.jp
,
Akichika Itoh*
a   Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan   Fax: +81(58)2308108   Email: itoha@gifu-pu.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 20 February 2014

Accepted after revision: 26 March 2014

Publication Date:
30 April 2014 (online)


Abstract

Carbon–carbon bonds were formed between tertiary amines and carbon nucleophiles such as nitroalkanes, ketones, trimethylsilyl cyanide, or indole under aerobic photooxidative conditions by using 2-chloroanthra-9,10-quinone as an organocatalyst. This reaction uses harmless visible-light irradiation with molecular oxygen as the terminal oxidant.

Supporting Information

 
  • References and Notes


    • For reviews on cross-dehydrogenative coupling, see:
    • 1a Yeung CS, Dong VM. Chem. Rev. 2011; 111: 1215
    • 1b Klussmann M, Sureshkumar D. Synthesis 2011; 353
    • 1c Li C.-J. Acc. Chem. Res. 2009; 42: 335
    • 1d Murahashi S.-I, Zhang D. Chem. Soc. Rev. 2008; 37: 1490
    • 2a Murahashi S.-I, Nakae T, Terai H, Komiya N. J. Am. Chem. Soc. 2008; 130: 11005
    • 2b Murahashi S.-I, Komiya N, Terai H. Angew. Chem. Int. Ed. 2005; 44: 6931
    • 2c Murahashi S.-I, Komiya N, Terai H, Nakae T. J. Am. Chem. Soc. 2003; 125: 15312
    • 3a Baslé O, Li C.-J. Chem. Commun. 2009; 4124
    • 3b Baslé O, Li C.-J. Green Chem. 2007; 9: 1047
    • 3c Li Z, Li C.-J. J. Am. Chem. Soc. 2005; 127: 6968
    • 3d Li Z, Li C.-J. J. Am. Chem. Soc. 2005; 127: 3672
    • 3e Li Z, Li C.-J. Org. Lett. 2004; 6: 4997
    • 3f Li Z, Li C.-J. J. Am. Chem. Soc. 2004; 126: 11810
    • 4a Ghobrial M, Harhammer K, Mihovilovic MD, Schnürch M. Chem. Commun. 2010; 46: 8836
    • 4b Liu P, Zhou C.-Y, Xiang S, Che C.-M. Chem. Commun. 2010; 46: 2739
    • 4c Zeng T, Song G, Moores A, Li C.-J. Synlett 2010; 2002
    • 4d Han W, Ofial AR. Chem. Commun. 2009; 6023
    • 4e Rao Volla CM, Vogel P. Org. Lett. 2009; 11: 1701
    • 4f Chiavarino B, Cipollini R, Crestoni ME, Fornarini S, Lanucara F, Lapi A. J. Am. Chem. Soc. 2008; 130: 3208
    • 5a Alagiri K, Kumara GS. R, Prabhu KR. Chem. Commun. 2011; 47: 11787
    • 5b Sud A, Sureshkumar D, Klussmann M. Chem. Commun. 2009; 3169
  • 6 Catino AJ, Nichols JM, Nettles BJ, Doyle MP. J. Am. Chem. Soc. 2006; 128: 5648
  • 7 Xie J, Li H, Zhou J, Cheng Y, Zhu C. Angew. Chem. Int. Ed. 2012; 51: 1252
  • 8 Shu X.-Z, Yang Y.-F, Xia X.-F, Ji K.-G, Liu X.-Y, Liang YM. Org. Biomol. Chem. 2010; 8: 4077
  • 9 Shu X.-Z, Xia X.-F, Yang Y.-F, Ji K.-G, Liu X.-Y, Liang Y.-M. J. Org. Chem. 2009; 74: 7464
  • 10 Su W, Yu J, Li Z, Jiang Z. J. Org. Chem. 2011; 76: 9144
  • 11 Allen JM, Lambert TH. J. Am. Chem. Soc. 2011; 133: 1260

    • For recent reports, see:
    • 12a Neel AJ, Hehn JP, Tripet PF, Toste FD. J. Am. Chem. Soc. 2013; 135: 14044
    • 12b Zhang G, Ma Y, Wang S, Konga W, Wang R. Chem. Sci. 2013; 4: 2645
    • 12c Zhang G, Ma Y, Wang S, Zhang Y, Wang R. J. Am. Chem. Soc. 2012; 134: 12334
    • 12d Zhang J, Tiwari B, Xing C, Chen X, Chi YR. Angew. Chem. Int. Ed. 2012; 51: 3649
    • 13a Nobuta T, Tada N, Fujiya A, Kariya A, Miura T, Itoh A. Org. Lett. 2013; 15: 574
    • 13b Nobuta T, Fujiya A, Yamaguchi T, Tada N, Miura T, Itoh A. RSC Adv. 2013; 3: 10189
  • 14 Modern Oxidation Methods . Bäckvall J.-E. Wiley-VCH; Weinheim: 2010. 2nd ed.
  • 15 Condie AG, González-Gómez JC, Stephenson CR. J. J. Am. Chem. Soc. 2010; 132: 1464
    • 16a Freeman DB, Furst L, Condie AG, Stephenson CR. J. Org. Lett. 2012; 14: 94
    • 16b Rueping M, Vila C, Koenigs RM, Poscharny K, Fabry DC. Chem. Commun. 2011; 47: 2360
    • 17a Hari DP, König B. Org. Lett. 2011; 13: 3852
    • 17b Liu Q, Li Y.-N, Zhang Y.-N, Chen B, Tung C.-H, Wu L.-Z. Chem. Eur. J. 2012; 18: 620
    • 18a Pan Y, Kee CW, Chen L, Tan C.-H. Green Chem. 2011; 13: 2682
    • 18b Rueping M, Vila C, Bootwicha T. ACS Catal. 2013; 3: 1676
  • 19 1-(Nitromethyl)-2-phenyl-1,2,3,4-tetrahydroisoquinoline (3aa); Typical Procedure A solution of 2-phenyl-1,2,3,4-tetrahydroisoquinoline (1a, 0.3 mmol), 2­chloroanthra-9,10-quinone (0.021mmol), and MeNO2 (2a, 1.5 mmol) in MeOH (3mL) in a Pyrex test tube, purged with an O2 balloon, was stirred and externally irradiated by fluorescent lamps for 20 h. The mixture was then concentrated in vacuo. Purification of the crude product by flash chromatography [silica gel, hexane–EtOAc–Et3N (100:10:1)] gave a yellow solid; mp 103.3–104.1 °C; 64.5 mg (80%); 1H NMR (500 MHz, CDCl3): δ = 7.28–7.16 (m, 5 H), 7.11 (d, J = 7.4 Hz, 1 H), 6.97 (d, J = 7.5 Hz, 2 H), 6.83 (t, J = 7.2 Hz, 1 H), 5.54 (t, J = 7.2 Hz, 1 H), 4.84 (dd, J = 11.4, 7.4 Hz, 1 H), 4.54 (dd, J = 12.0, 6.9 Hz, 1 H), 3.67–3.57 (m, 2 H), 3.10–3.03 (m, 1 H), 2.77 (dt, J = 16.1, 5.1 Hz, 1 H); 13C NMR (125 MHz, CDCl3): δ = 148.4, 135.2, 132.8, 129.4, 129.1, 128.0, 126.9, 126.6, 119.4, 115.0, 78.7, 58.1, 42.0, 26.4. 1-(2-Phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)acetone (3ad)
    Colorless solid; mp 82.9–83.4 °C; 42.3 mg (53%); 1H NMR (500 MHz, CDCl3): δ = 7.26–7.12 (m, 6 H), 6.93 (d, J = 8.6 Hz, 2 H), 6.77 (t, J = 7.8 Hz, 1 H), 5.40 (t, J = 6.6 Hz, 1 H), 3.67–3.62 (m, 1 H), 3.55–3.50 (m, 1 H), 3.08–3.02 (m, 2 H), 2.82 (dt, J = 16.6, 4.5 Hz, 2 H), 2.07 (s, 3 H); 13C NMR (125 MHz, CDCl3): δ = 207.3, 148.8, 138.2, 134.4, 129.3, 128.6, 126.8, 126.8, 126.2, 118.2, 114.7, 54.7, 50.1, 42.0, 31.1, 27.2. 2-Phenyl-1,2,3,4-tetrahydroisoquinoline-1-carbonitrile (3af)
    Colorless solid; mp 94.5–95.1 °C; 35.9 mg (51%); 1H NMR (500 MHz, CDCl3): δ = 7.41–7.22 (m, 6 H), 7.08 (d, J = 8.6 Hz, 2 H), 7.01 (t, J = 7.4 Hz, 1 H), 5.51 (s, 1 H), 3.79–3.75 (m, 1 H), 3.50–3.45 (m, 1 H), 3.18–3.12 (m, 1 H), 2.96 (dt, J = 16.0, 3.5 Hz, 1 H). 13C NMR (125 MHz, CDCl3): δ = 148.3, 134.6, 129.5, 129.3, 128.7, 127.0, 126.8, 121.8, 117.7, 117.6, 53.2, 44.1, 28.5.
  • 20 Although diethyl malonate also reacted as substrate to give the corresponding product, the product could not be separated from diethyl malonate by flash chromatography. Neither acetylacetone nor ethyl acetoacetate gave a product.
  • 21 N,N-Diphenylbenzylamine, N-methyl-N-phenylbenzyl-amine, 1,2,3,4-tetrahydroisoquinoline, and trioctylamine were also poor substrates
  • 22 See the Supporting Information.