Semin Reprod Med 2014; 32(01): 068-073
DOI: 10.1055/s-0033-1361824
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

A Review of the Source and Function of Microbiota in Breast Milk

M. Susan LaTuga
1   Department of Pediatrics, Division of Neonatology, Albert Einstein College of Medicine, Bronx, New York
,
Alison Stuebe
2   Department of Obstetrics and Gynecology, University of North Carolina School of Medicine
3   Department of Maternal and Child Health, Gillings School of Global Public Health, Chapel Hill, North Carolina
,
Patrick C. Seed
4   Department of Pediatrics, Division of Infectious Diseases, Duke University, Durham, North Carolina
› Author Affiliations
Further Information

Publication History

Publication Date:
03 January 2014 (online)

Abstract

Breast milk contains a rich microbiota composed of viable skin and non-skin bacteria. The extent of the breast milk microbiota diversity has been revealed through new culture-independent studies using microbial DNA signatures. However, the extent to which the breast milk microbiota are transferred from mother to infant and the function of these breast milk microbiota for the infant are only partially understood. Here, we appraise hypotheses regarding the formation of breast milk microbiota, including retrograde infant-to-mother transfer and enteromammary trafficking, and we review current knowledge of mechanisms determining the extent of breast milk microbiota transfer from mother to infant. We highlight known functions of constituents in the breast milk microbiota—to enhance immunity, liberate nutrients, synergize with breast milk oligosaccharides to enhance intestinal barrier function, and strengthen a functional gut–brain axis. We also consider the pathophysiology of maternal mastitis with respect to a dysbiosis or abnormal shift in the breast milk microbiota. In conclusion, through a complex, highly evolved process in the early stages of discovery, mothers transfer the breast milk microbiota to their infants to impact infant growth and development.

 
  • References

  • 1 Han YW, Shen T, Chung P, Buhimschi IA, Buhimschi CS. Uncultivated bacteria as etiologic agents of intra-amniotic inflammation leading to preterm birth. J Clin Microbiol 2009; 47 (1) 38-47
  • 2 D'Onofrio A, Crawford JM, Stewart EJ , et al. Siderophores from neighboring organisms promote the growth of uncultured bacteria. Chem Biol 2010; 17 (3) 254-264
  • 3 Costello EK, Stagaman K, Dethlefsen L, Bohannan BJ, Relman DA. The application of ecological theory toward an understanding of the human microbiome. Science 2012; 336 (6086) 1255-1262
  • 4 Grice EA, Kong HH, Conlan S , et al; NISC Comparative Sequencing Program. Topographical and temporal diversity of the human skin microbiome. Science 2009; 324 (5931) 1190-1192
  • 5 Gao Z, Tseng CH, Pei Z, Blaser MJ. Molecular analysis of human forearm superficial skin bacterial biota. Proc Natl Acad Sci U S A 2007; 104 (8) 2927-2932
  • 6 Yatsunenko T, Rey FE, Manary MJ , et al. Human gut microbiome viewed across age and geography. Nature 2012; 486 (7402) 222-227
  • 7 Gueimonde M, Laitinen K, Salminen S, Isolauri E. Breast milk: a source of bifidobacteria for infant gut development and maturation?. Neonatology 2007; 92 (1) 64-66
  • 8 Heikkilä MP, Saris PE. Inhibition of Staphylococcus aureus by the commensal bacteria of human milk. J Appl Microbiol 2003; 95 (3) 471-478
  • 9 Tyson JE, Edwards WH, Rosenfeld AM, Beer AE. Collection methods and contamination of bank milk. Arch Dis Child 1982; 57 (5) 396-398
  • 10 Hunt KM, Foster JA, Forney LJ , et al. Characterization of the diversity and temporal stability of bacterial communities in human milk. PLoS ONE 2011; 6 (6) e21313
  • 11 Cabrera-Rubio R, Collado MC, Laitinen K, Salminen S, Isolauri E, Mira A. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am J Clin Nutr 2012; 96 (3) 544-551
  • 12 Thompson N, Pickler RH, Munro C, Shotwell J. Contamination in expressed breast milk following breast cleansing. J Hum Lact 1997; 13 (2) 127-130
  • 13 Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO. Development of the human infant intestinal microbiota. PLoS Biol 2007; 5 (7) e177
  • 14 Perez PF, Doré J, Leclerc M , et al. Bacterial imprinting of the neonatal immune system: lessons from maternal cells?. Pediatrics 2007; 119 (3) e724-e732
  • 15 Holmes AV. Establishing successful breastfeeding in the newborn period. Pediatr Clin North Am 2013; 60 (1) 147-168
  • 16 Ramsay DT, Kent JC, Owens RA, Hartmann PE. Ultrasound imaging of milk ejection in the breast of lactating women. Pediatrics 2004; 113 (2) 361-367
  • 17 Ramsay DT, Mitoulas LR, Kent JC, Larsson M, Hartmann PE. The use of ultrasound to characterize milk ejection in women using an electric breast pump. J Hum Lact 2005; 21 (4) 421-428
  • 18 Lif Holgerson P, Harnevik L, Hernell O, Tanner AC, Johansson I. Mode of birth delivery affects oral microbiota in infants. J Dent Res 2011; 90 (10) 1183-1188
  • 19 Stagg AJ, Hart AL, Knight SC, Kamm MA. The dendritic cell: its role in intestinal inflammation and relationship with gut bacteria. Gut 2003; 52 (10) 1522-1529
  • 20 Donnet-Hughes A, Perez PF, Doré J , et al. Potential role of the intestinal microbiota of the mother in neonatal immune education. Proc Nutr Soc 2010; 69 (3) 407-415
  • 21 Turroni F, Peano C, Pass DA , et al. Diversity of bifidobacteria within the infant gut microbiota. PLoS ONE 2012; 7 (5) e36957
  • 22 Heath L, Conway S, Jones L , et al. Restriction of HIV-1 genotypes in breast milk does not account for the population transmission genetic bottleneck that occurs following transmission. PLoS ONE 2010; 5 (4) e10213
  • 23 Gray RR, Salemi M, Lowe A , et al. Multiple independent lineages of HIV-1 persist in breast milk and plasma. AIDS 2011; 25 (2) 143-152
  • 24 Wu GD, Chen J, Hoffmann C , et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011; 334 (6052) 105-108
  • 25 Wu CA, Paveglio SA, Lingenheld EG, Zhu L, Lefrançois L, Puddington L. Transmission of murine cytomegalovirus in breast milk: a model of natural infection in neonates. J Virol 2011; 85 (10) 5115-5124
  • 26 Vochem M, Hamprecht K, Jahn G, Speer CP. Transmission of cytomegalovirus to preterm infants through breast milk. Pediatr Infect Dis J 1998; 17 (1) 53-58
  • 27 Stagno S, Reynolds DW, Pass RF, Alford CA. Breast milk and the risk of cytomegalovirus infection. N Engl J Med 1980; 302 (19) 1073-1076
  • 28 Lanzieri TM, Dollard SC, Josephson CD, Schmid DS, Bialek SR. Breast milk-acquired cytomegalovirus infection and disease in VLBW and premature infants. Pediatrics 2013; 131 (6) e1937-e1945
  • 29 Ehlinger EP, Webster EM, Kang HH , et al. Maternal cytomegalovirus-specific immune responses and symptomatic postnatal cytomegalovirus transmission in very low-birth-weight preterm infants. J Infect Dis 2011; 204 (11) 1672-1682
  • 30 Godfrey WR, Spoden DJ, Ge YG , et al. Cord blood CD4(+)CD25(+)-derived T regulatory cell lines express FoxP3 protein and manifest potent suppressor function. Blood 2005; 105 (2) 750-758
  • 31 Zhou L, Chong MM, Littman DR. Plasticity of CD4+ T cell lineage differentiation. Immunity 2009; 30 (5) 646-655
  • 32 Zhang B, Ohtsuka Y, Fujii T , et al. Immunological development of preterm infants in early infancy. Clin Exp Immunol 2005; 140 (1) 92-96
  • 33 Stephens S, Brenner MK, Duffy SW, Lakhani PK, Kennedy CR, Farrant J. The effect of breast-feeding on proliferation by infant lymphocytes in vitro. Pediatr Res 1986; 20 (3) 227-231
  • 34 Carver JD, Pimentel B, Wiener DA, Lowell NE, Barness LA. Infant feeding effects on flow cytometric analysis of blood. J Clin Lab Anal 1991; 5 (1) 54-56
  • 35 Tarcan A, Gürakan B, Tiker F, Ozbek N. Influence of feeding formula and breast milk fortifier on lymphocyte subsets in very low birth weight premature newborns. Biol Neonate 2004; 86 (1) 22-28
  • 36 Donnet-Hughes A. Protective properties of human milk. In: Duggan D, , ed. Nutrition in Pediatrics. 4th ed. Ontario, Canada: Decker Publishing; 2008: 355-362
  • 37 Spörri R, Reis e Sousa C. Inflammatory mediators are insufficient for full dendritic cell activation and promote expansion of CD4+ T cell populations lacking helper function. Nat Immunol 2005; 6 (2) 163-170
  • 38 Hansen CH, Nielsen DS, Kverka M , et al. Patterns of early gut colonization shape future immune responses of the host. PLoS ONE 2012; 7 (3) e34043
  • 39 M'Rabet L, Vos AP, Boehm G, Garssen J. Breast-feeding and its role in early development of the immune system in infants: consequences for health later in life. J Nutr 2008; 138 (9) 1782S-1790S
  • 40 Arumugam M, Raes J, Pelletier E , et al; MetaHIT Consortium. Enterotypes of the human gut microbiome. Nature 2011; 473 (7346) 174-180
  • 41 Ward TL, Hosid S, Ioshikhes I, Altosaar I. Human milk metagenome: a functional capacity analysis. BMC Microbiol 2013; 13: 116
  • 42 Morowitz MJ, Denef VJ, Costello EK , et al. Strain-resolved community genomic analysis of gut microbial colonization in a premature infant. Proc Natl Acad Sci U S A 2011; 108 (3) 1128-1133
  • 43 LaTuga MS, Ellis JC, Cotton CM , et al. Beyond bacteria: a study of the enteric microbial consortium in extremely low birth weight infants. PLoS ONE 2011; 6 (12) e27858
  • 44 Schwartz S, Friedberg I, Ivanov IV , et al. A metagenomic study of diet-dependent interaction between gut microbiota and host in infants reveals differences in immune response. Genome Biol 2012; 13 (4) r32
  • 45 Carlisle EM, Poroyko V, Caplan MS, Alverdy J, Morowitz MJ, Liu D. Murine gut microbiota and transcriptome are diet dependent. Ann Surg 2013; 257 (2) 287-294
  • 46 Hancock RE, Scott MG. The role of antimicrobial peptides in animal defenses. Proc Natl Acad Sci U S A 2000; 97 (16) 8856-8861
  • 47 Berkes J, Viswanathan VK, Savkovic SD, Hecht G. Intestinal epithelial responses to enteric pathogens: effects on the tight junction barrier, ion transport, and inflammation. Gut 2003; 52 (3) 439-451
  • 48 Bates JM, Akerlund J, Mittge E, Guillemin K. Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in Zebrafish in response to the gut microbiota. Cell Host Microbe 2007; 2 (6) 371-382
  • 49 Liedel JL, Guo Y, Yu Y , et al. Mother's milk-induced Hsp70 expression preserves intestinal epithelial barrier function in an immature rat pup model. Pediatr Res 2011; 69 (5, Pt 1) 395-400
  • 50 Arvans DL, Vavricka SR, Ren H , et al. Luminal bacterial flora determines physiological expression of intestinal epithelial cytoprotective heat shock proteins 25 and 72. Am J Physiol Gastrointest Liver Physiol 2005; 288 (4) G696-G704
  • 51 Marcobal A, Barboza M, Sonnenburg ED , et al. Bacteroides in the infant gut consume milk oligosaccharides via mucus-utilization pathways. Cell Host Microbe 2011; 10 (5) 507-514
  • 52 Hunt KM, Preuss J, Nissan C , et al. Human milk oligosaccharides promote the growth of staphylococci. Appl Environ Microbiol 2012; 78 (14) 4763-4770
  • 53 Jantscher-Krenn E, Marx C, Bode L. Human milk oligosaccharides are differentially metabolised in neonatal rats. Br J Nutr 2013; 110 (4) 640-650
  • 54 Eiwegger T, Stahl B, Haidl P , et al. Prebiotic oligosaccharides: in vitro evidence for gastrointestinal epithelial transfer and immunomodulatory properties. Pediatr Allergy Immunol 2010; 21 (8) 1179-1188
  • 55 Husebye E, Hellström PM, Midtvedt T. Intestinal microflora stimulates myoelectric activity of rat small intestine by promoting cyclic initiation and aboral propagation of migrating myoelectric complex. Dig Dis Sci 1994; 39 (5) 946-956
  • 56 Husebye E, Hellström PM, Sundler F, Chen J, Midtvedt T. Influence of microbial species on small intestinal myoelectric activity and transit in germ-free rats. Am J Physiol Gastrointest Liver Physiol 2001; 280 (3) G368-G380
  • 57 Sudo N, Chida Y, Aiba Y , et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol 2004; 558 (Pt 1) 263-275
  • 58 Bercik P, Denou E, Collins J , et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 2011; 141 (2) 599-609 , e1–e3
  • 59 World Health Organization. Mastitis: Causes and Management. Geneva: World Health Organization; 2000
  • 60 Kvist LJ, Larsson BW, Hall-Lord ML, Steen A, Schalén C. The role of bacteria in lactational mastitis and some considerations of the use of antibiotic treatment. Int Breastfeed J 2008; 3: 6
  • 61 Delgado S, Arroyo R, Martín R, Rodríguez JM. PCR-DGGE assessment of the bacterial diversity of breast milk in women with lactational infectious mastitis. BMC Infect Dis 2008; 8: 51
  • 62 Delgado S, Arroyo R, Jiménez E , et al. Staphylococcus epidermidis strains isolated from breast milk of women suffering infectious mastitis: potential virulence traits and resistance to antibiotics. BMC Microbiol 2009; 9: 82
  • 63 Bouchard DS, Rault L, Berkova N, Le Loir Y, Even S. Inhibition of Staphylococcus aureus invasion into bovine mammary epithelial cells by contact with live Lactobacillus casei. Appl Environ Microbiol 2013; 79 (3) 877-885
  • 64 Jones SE, Versalovic J. Probiotic Lactobacillus reuteri biofilms produce antimicrobial and anti-inflammatory factors. BMC Microbiol 2009; 9: 35
  • 65 Jiménez E, Fernández L, Maldonado A , et al. Oral administration of Lactobacillus strains isolated from breast milk as an alternative for the treatment of infectious mastitis during lactation. Appl Environ Microbiol 2008; 74 (15) 4650-4655
  • 66 Arroyo R, Martín V, Maldonado A, Jiménez E, Fernández L, Rodríguez JM. Treatment of infectious mastitis during lactation: antibiotics versus oral administration of Lactobacilli isolated from breast milk. Clin Infect Dis 2010; 50 (12) 1551-1558