Diabetologie und Stoffwechsel 2014; 9(1): 38-44
DOI: 10.1055/s-0034-1365970
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Therapie mit GLP-1-Rezeptoragonisten bei Typ-2-Diabetes in speziellen Behandlungssituationen

Therapeutic Approaches with GLP-1-Analogues in Specific Situations of Type 2 Diabetes Treatment
G. Rudofsky
Further Information

Publication History

Publication Date:
17 February 2014 (online)

Zusammenfassung

Inkretinbasierte antidiabetische Therapien ermöglichen eine wirksame glykämische Kontrolle bei vergleichsweise niedrigem Hypoglykämierisiko und günstiger Wirkung auf das Körpergewicht. Als Hormonderivate zeigen sie über den antihyperglykämischen Effekt hinausgehende Wirkungen auf verschiedene Organsysteme des Körpers und haben sich als fester Bestandteil im Behandlungskonzept bei Patienten mit Typ-2-Diabetes (T2DM) etabliert. Allerdings bestehen beim Einsatz bei Patienten verschiedener Risikogruppen, z. B. niereninsuffiziente Patienten, noch Unsicherheiten. Wenngleich limitiert, erlaubt die gegenwärtige Datenlage eine Einschätzung des Nutzen-Risiko-Verhältnisses GLP-1-basierter Therapien bei diesen Patienten. Dabei erweisen sich die Inkretinmimetika, besonders bei T2DM-Patienten mit kardiovaskulären Komorbiditäten und bei älteren T2DM-Patienten, als günstig. Bei Risikopatienten mit gastrointestinalen Komorbiditäten, mit Leberfunktionsstörungen und mit eingeschränkter Nierenfunktion sind sie bislang nur unter Vorbehalt anzuwenden. Bei Bestehen einer Pankreatitis oder manifester Pankreasproliferation ist aufgrund aktuell nicht vorhandener Sicherheitsdaten zu diesem Aspekt von einer inkretinbasierten Therapie abzusehen.

Abstract

Incretin-based antidiabetic therapies allow efficient glycemic control with a relatively low risk for hypoglycemia and a positive effect on body weight. As hormone derivatives these products exert functions in several organ systems. They have become a widely accepted therapeutic option in the treatment of type 2 diabetes. However, their routine clinical use is often associated with uncertainty when it comes to certain risk groups, such as patients with renal impairment. Although limited, current data allows a risk-benefit-analysis of GLP-1-based therapies for individual patient groups. Incretin mimetics proved beneficial especially in type 2 diabetes patients with cardiovascular comorbidities and in the elderly. In patients with gastrointestinal comorbidities and liver disease they should be used with caution. As safety data on incretin-based therapies in patients with confirmed pancreatitis or pancreas proliferation is currently missing, use in these patients is not recommended at present.

 
  • Literatur

  • 1 Grunberger G et al. Monotherapy with the once-weekly GLP-1 analogue dulaglutide for 12 weeks in patients with Type 2 diabetes: dose-dependent effects on glycaemic control in a randomized, double-blind, placebo-controlled study. Diabet Med 2012; 29: 1260-1267
  • 2 Lovshin JA, Drucker DJ. Incretin-based therapies for type 2 diabetes mellitus. Nat Rev Endocrinol 2009; 5: 262-269
  • 3 MacDonald PE et al. The multiple actions of GLP-1 on the process of glucose-stimulated insulin secretion. Diabetes 2002; 51 (Suppl. 03) S434-S442
  • 4 Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology 2007; 132: 2131-2157
  • 5 Cryer PE, Davis SN, Shamoon H. Hypoglycemia in diabetes. Diabetes Care 2003; 26: 1902-1912
  • 6 Malm-Erjefält M et al. Metabolism and excretion of the once-daily human glucagon-like peptide-1 analog liraglutide in healthy male subjects and its in vitro degradation by dipeptidyl peptidase IV and neutral endopeptidase. Drug Metab Dispos 2010; 38: 1944-1953
  • 7 Elbrond B et al. Pharmacokinetics, pharmacodynamics, safety, and tolerability of a single-dose of NN2211, a long-acting glucagon-like peptide 1 derivative, in healthy male subjects. Diabetes Care 2002; 25: 1398-1404
  • 8 Christensen M et al. Lixisenatide for type 2 diabetes mellitus. Expert opinion on investigational drugs 2011; 20: 549-557
  • 9 Pohl M, Wank SA. Molecular cloning of the helodermin and exendin-4 cDNAs in the lizard. Relationship to vasoactive intestinal polypeptide/pituitary adenylate cyclase activating polypeptide and glucagon-like peptide 1 and evidence against the existence of mammalian homologues. J Biol Chem 1998; 273: 9778-9784
  • 10 Barnett AH. Lixisenatide: evidence for its potential use in the treatment of type 2 diabetes. Core Evid 2011; 6: 67-79
  • 11 Kolterman OG et al. Pharmacokinetics, pharmacodynamics, and safety of exenatide in patients with type 2 diabetes mellitus. Am J Health Syst Pharm 2005; 62: 173-181
  • 12 Drucker DJ. The biology of incretin hormones. Cell Metab 2006; 3: 153-165
  • 13 Mundil D, Cameron-Vendrig A, Husain M. GLP-1 receptor agonists: a clinical perspective on cardiovascular effects. Diab Vasc Dis Res 2012; 9: 95-108
  • 14 Armstrong MJ et al. Safety and efficacy of liraglutide in patients with type 2 diabetes and elevated liver enzymes: individual patient data meta-analysis of the LEAD program. Aliment Pharmacol Ther 2013; 37: 234-242
  • 15 Marquess JG. Managing special populations among patients with type 2 diabetes mellitus. Pharmacotherapy 2011; 31: 65S-72S
  • 16 Lando HM, Alattar M, Dua AP. Elevated amylase and lipase levels in patients using glucagonlike peptide-1 receptor agonists or dipeptidyl-peptidase-4 inhibitors in the outpatient setting. Endocr Pract 2012; 18: 472-477
  • 17 Sun F et al. Impact of GLP-1 receptor agonists on major gastrointestinal disorders for type 2 diabetes mellitus: a mixed treatment comparison meta-analysis. Exp Diabetes Res 2012; 2012: 230624
  • 18 Noel RA et al. Increased risk of acute pancreatitis and biliary disease observed in patients with type 2 diabetes: a retrospective cohort study. Diabetes Care 2009; 32: 834-838
  • 19 Das SL et al. Newly diagnosed diabetes mellitus after acute pancreatitis: a systematic review and meta-analysis. Gut 2013; Aug 8 DOI: 10.1136/gutjnl-2013-305062. .[Epub ahead of print]
  • 20 Nauck MA. A Critical Analysis of the Clinical Use of Incretin-Based Therapies: The benefits by far outweigh the potential risks. Diabetes Care 2013; 36: 2126-2132
  • 21 Nachnani JS et al. Biochemical and histological effects of exendin-4 (exenatide) on the rat pancreas. Diabetologia 2010; 53: 153-159
  • 22 Vrang N et al. The effects of 13 wk of liraglutide treatment on endocrine and exocrine pancreas in male and female ZDF rats: a quantitative and qualitative analysis revealing no evidence of drug-induced pancreatitis. American Journal of Physiology-Endocrinology And Metabolism 2012; 303: E253-E264
  • 23 Nyborg NCB et al. The human GLP-1 analog liraglutide and the pancreas: evidence for the absence of structural pancreatic changes in three species. Diabetes 2012; 61: 1243-1249
  • 24 Alves C, Batel-Marques F, Macedo AF. A meta-analysis of serious adverse events reported with exenatide and liraglutide: acute pancreatitis and cancer. Diabetes Res Clin Pract 2012; 98: 271-284
  • 25 Kahn SE. Incretin therapy and islet pathology: a time for caution. Diabetes 2013; 62: 2178-2180
  • 26 Elashoff M et al. Pancreatitis, pancreatic, and thyroid cancer with glucagon-like peptide-1-based therapies. Gastroenterology 2011; 141: 150-156
  • 27 Butler AE et al. Marked expansion of exocrine and endocrine pancreas with incretin therapy in humans with increased exocrine pancreas dysplasia and the potential for glucagon-producing neuroendocrine tumors. Diabetes 2013; 62: 2595-2604
  • 28 Klöppel G. Gutachterliche Stellungnahme im Auftrag der Deutschen Diabetesgesellschaft zur Arbeit von Butler et al. in Diabetes. Diabetologie, Stoffwechsel 2013; 8: 289-291
  • 29 Scirica BM et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med 2013; 369: 1317-1326
  • 30 White WB et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med 2013; 369: 1327-1335
  • 31 Gaspari T et al. The GLP-1 receptor agonist liraglutide inhibits progression of vascular disease via effects on atherogenesis, plaque stability and endothelial function in an ApoE-/- mouse model. Diab Vasc Dis Res 2013; 10: 353-360
  • 32 Ravassa S, Zudaire A, Díez J. GLP-1 and cardioprotection: from bench to bedside. Cardiovasc Res 2012; 94: 316-323
  • 33 Timmers L et al. Exenatide reduces infarct size and improves cardiac function in a porcine model of ischemia and reperfusion injury. J Am Coll Cardiol 2009; 53: 501-510
  • 34 Blonde L et al. Interim analysis of the effects of exenatide treatment on A1C, weight and cardiovascular risk factors over 82 weeks in 314 overweight patients with type 2 diabetes. Diabetes, Obesity and Metabolism 2006; 8: 436-447
  • 35 Buse JB et al. Liraglutide once a day versus exenatide twice a day for type 2 diabetes: a 26-week randomised, parallel-group, multinational, open-label trial (LEAD-6). Lancet 2009; 374: 39-47
  • 36 Garber A et al. Liraglutide versus glimepiride monotherapy for type 2 diabetes (LEAD-3 Mono): a randomised, 52-week, phase III, double-blind, parallel-treatment trial. Lancet 2009; 373: 473-481
  • 37 Russell-Jones D et al. Liraglutide vs insulin glargine and placebo in combination with metformin and sulfonylurea therapy in type 2 diabetes mellitus (LEAD-5 met+SU): a randomised controlled trial. Diabetologia 2009; 52: 2046-2055
  • 38 Zinman B et al. Efficacy and safety of the human glucagon-like peptide-1 analog liraglutide in combination with metformin and thiazolidinedione in patients with type 2 diabetes (LEAD-4 Met+TZD). Diabetes Care 2009; 32: 1224-1230
  • 39 Marso SP et al. Cardiovascular safety of liraglutide assessed in a patient-level pooled analysis of phase 2: 3 liraglutide clinical development studies. Diab Vasc Dis Res 2011; 8: 237-240
  • 40 Ratner R et al. Cardiovascular safety of exenatide BID: an integrated analysis from controlled clinical trials in participants with type 2 diabetes. Cardiovasc Diabetol 2011; 10: 22
  • 41 Forst T et al. Addition of liraglutide in patients with Type 2 diabetes well controlled on metformin monotherapy improves several markers of vascular function. Diabet Med 2012; 29: 1115-1118
  • 42 Linnebjerg H et al. Effect of renal impairment on the pharmacokinetics of exenatide. Br J Clin Pharmacol 2007; 64: 317-327
  • 43 Jacobsen LV et al. Effect of renal impairment on the pharmacokinetics of the GLP-1 analogue liraglutide. Br J Clin Pharmacol 2009; 68: 898-905
  • 44 Davidson JA et al. Mild Renal Impairment Has No Effect on the Efficacy and Safety of Liraglutide. Endocr Pract 2010; 1-31
  • 45 Dejager S, Schweizer A. Incretin therapies in the management of patients with type 2 diabetes mellitus and renal impairment. Hosp Pract (1995) 2012; 40: 7-21
  • 46 Targher G et al. Prevalence of nonalcoholic fatty liver disease and its association with cardiovascular disease among type 2 diabetic patients. Diabetes Care 2007; 30: 1212-1218
  • 47 Flint A et al. Influence of hepatic impairment on pharmacokinetics of the human GLP-1 analogue, liraglutide. Br J Clin Pharmacol 2010; 70: 807-814
  • 48 Gupta NA et al. Glucagon-like peptide-1 receptor is present on human hepatocytes and has a direct role in decreasing hepatic steatosis in vitro by modulating elements of the insulin signaling pathway. Hepatology 2010; 51: 1584-1592
  • 49 Armstrong M et al. OP03 Effects of two years of liraglutide treatment on fatty liver disease in patients with type 2 diabetes: analysis of the Liraglutide Effect and Action in Diabetes-2 extension trial. Gut 2010; 59: A1-A2
  • 50 Bundesärztekammer (BÄK), Kassenärztliche Bundesvereinigung (KBV), Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF). Nationale VersorgungsLeitlinie Therapie des Typ-2-Diabetes – Langfassung. 1. Aufl. Version 1. 2013. Available from: http://www.versorgungsleitlinien.de/themen/diabetes2/dm2_Therapie
  • 51 Feldman M, Schiller LR. Disorders of gastrointestinal motility associated with diabetes mellitus. Ann Intern Med 1983; 98: 378-384
  • 52 Bjerre KnudsenL et al. Glucagon-like Peptide-1 receptor agonists activate rodent thyroid C-cells causing calcitonin release and C-cell proliferation. Endocrinology 2010; 151: 1473-1486
  • 53 Boess F et al. Effect of GLP1R agonists taspoglutide and liraglutide on primary thyroid C-cells from rodent and man. J Mol Endocrinol 2013; 50: 325-336
  • 54 Gallo M. Thyroid safety in patients treated with liraglutide. J Endocrinol Invest 2013; 36: 140-145
  • 55 Hegedüs L et al. GLP-1 and calcitonin concentration in humans: lack of evidence of calcitonin release from sequential screening in over 5000 subjects with type 2 diabetes or nondiabetic obese subjects treated with the human GLP-1 analog, liraglutide. J Clin Endocrinol Metab 2011; 96: 853-860
  • 56 Kim KS et al. Management of type 2 diabetes mellitus in older adults. Diabetes Metab J 2012; 36: 336-344
  • 57 Heidemann C, Du Y, Scheidt-Nave C. Diabetes mellitus in Deutschland. GBE kompakt 2011; 3
  • 58 Bode BW et al. Comparison of the efficacy and tolerability profile of liraglutide, a once-daily human GLP-1 analog, in patients with type 2 diabetes ≥65 and <65 years of age: a pooled analysis from phase III studies. Am J Geriatr Pharmacother 2011; 9: 423-433