Drug Res (Stuttg) 2014; 64(12): 638-646
DOI: 10.1055/s-0034-1372609
© Georg Thieme Verlag KG Stuttgart · New York

Anti-inflammatory Properties of the Monoterpene 1.8-cineole: Current Evidence for Co-medication in Inflammatory Airway Diseases

U. R. Juergens
1   Department of Pneumology, Allergology, Sleep Medicine Medical Clinic II, Bonn University Hospital Bonn, Germany
› Author Affiliations
Further Information

Publication History

received 27 October 2013

accepted 18 March 2014

Publication Date:
15 May 2014 (online)


1,8-cineole is a natural monoterpene, also known as eucalyptol. It is a major compound of many plant essential oils, mainly extracted from Eucalyptus globulus oil. As an isolated compound, 1,8-cineole is known for its mucolytic and spasmolytic action on the respiratory tract, with proven clinical efficacy. 1,8-cineole has also shown therapeutic benefits in inflammatory airway diseases, such as asthma and chronic obstructive pulmonary disease (COPD). This clinical evidence refers to its anti-inflammatory and anti-oxidant mode of action, which has been proven in numerous pre-clinical studies. In vitro studies found strong evidence that 1,8-cineole controls inflammatory processes and mediator production of infection- or inflammation-induced mucus hypersecretion by its action as anti-inflammatory modifier rather than a simple mucolytic agent. The aim of this review is to present these preclinical studies performed with the pure monoterpene, and to summarize the current knowledge on the mode of action of 1,8-cineole. The actual understanding of the pure 1,8-cineole compared to mixtures of natural volatile oils containing 1,8-cineole as a major compound and to mixtures of natural terpenes, known as essential oils, will be discussed. Based on the anti-oxidative and anti-inflammatory properties, recent clinical trials with 1,8-cineole have shown first evidence for the beneficial use of 1,8-cineole as long-term therapy in the prevention of COPD-exacerbations and to improve asthma control.

  • References

  • 1 Sadlon AE, Lamson DW. Immune-modifying and antimicrobial effects of Eucalyptus oil and simple inhalation devices. Altern Med Rev 2010; 15: 33-47
  • 2 ESCOP , Eucalypti aetheroleum Eucalyptus Oil. In: ESCOP. (ed.). E/S/C/O/P Monographs. 2 ed. Thieme; 2003: 150-156
  • 3 Betts TJ. Solid phase microextraction of volatile constituents from individual fresh Eucalyptus leaves of three species. Planta Med 2000; 66: 193-195
  • 4 Kaspar P, Repges R, Dethlefsen U et al. Secretolytics in comparison. Change of muco-ciliar frequency and lung-function following therapy with cineole and ambroxol. Atemw-Lungenkrkh 1994; 20: 605-614 (in German)
  • 5 Habich G, Repges R. Chronic obstructive airway diseases. Cineole as medication useful and approved. Therapiewoche 1994; 44: 356-365 (in German)
  • 6 Wittmann M, Petro W, Kasper P et al. Therapy of chronic obstructive airway diseases with secretolytics. Atemw-Lungenkrkh 1998; 24: 67-74 (in German)
  • 7 Hänsel R, Hölzl J. 4.1.15 Eucalyptus leaves, eucalyptus oil and cineole. In: Hänsel R, Hölzl J. (eds.). Textbook of pharmaceutical Biology Berlin. Heidelberg, New York: Springer-Verlag; 1996. 151-152 (in German)
  • 8 Pattnaik S, Subramanyam VR, Bapaji M et al. Antibacterial and antifungal activity of aromatic constituents of essential oils. Microbios 1997; 89: 39-46
  • 9 Santos FA, Silva RM, Tomé AR et al. 1,8-cineole protects against liver failure in an in-vivo murine model of endotoxemic shock. J Pharm Pharmacol 2001; 53: 505-511
  • 10 Santos FA, Rao VS. 1,8-cineol, a food flavoring agent, prevents ethanol-induced gastric injury in rats. Dig Dis Sci 2001; 46: 331-337
  • 11 Santos FA, Silva RM, Campos AR et al. 1,8-cineole (eucalyptol), a monoterpene oxide attenuates the colonic damage in rats on acute TNBS-colitis. Food Chem Toxicol 2004; 42: 579-584
  • 12 Duisken M, Sandner F, Blömeke B et al. Metabolism of 1,8-cineole by human cytochrome P450 enzymes: indentification of a new hydroxylated metabolite. Biochem biophys acta 2005; 1722: 304-311
  • 13 Beauchamp J, Kirsch F, Buettner A. Real-time breath gas analysis for pharmacokinetics: monitoring exhaled breath by on-line proton-transfer-reaction mass spectrometry after ingestion of eucalyptol containing capsules. J Breath Res 2010; 4: 026006 DOI: 10.1088/1752-7155/4/2/026006.
  • 14 Hansbro PM, Kaiko GE, Foster PS. Cytokine/anti-cytokine therapy – novel treatments for asthma?. Br J Pharmacol 2011; 163: 81-95
  • 15 Ogawa Y, Calhoun WJ. The role of leukotrienes in airway inflammation. J Allergy Clin Immunol 2006; 118: 789-798 quiz 99–800
  • 16 Barnes PJ, Chung KF, Page CP. Inflammatory mediators of asthma: an update. Pharmacol Rev 1998; 50: 515-596
  • 17 Suissa S, Dell’Aniello S, Ernst P. Long-term natural history of chronic obstructive pulmonary disease: severe exacerbations and mortality. Thorax 2012; 67: 957-963
  • 18 Allen DB. Effects of inhaled steroids on growth, bone metabolism, and adrenal function. Adv Pediatr 2006; 53: 101-110
  • 19 Allen DB. Growth suppression by glucocorticoid therapy. Endocrinol Metab Clin North Am 1996; 25: 699-717
  • 20 Fischer J, Dethlefsen U. Efficacy of cineole in patients suffering from acute bronchitis: a placebo-controlled double-blind trial. Cough 2013; 9: 25 DOI: 10.1186/1745-9974-9-25.
  • 21 Tesche S, Metternich F, Sonnemann U et al. The value of herbal medicines in the treatment of acute non-purulent rhinosinusitis. Results of a double-blind, randomised, controlled trial. Eur Arch Otorhinolaryngol 2008; 265: 1355-1359
  • 22 Juergens UR, Stöber M, Schmidt-Schilling L et al. Antiinflammatory effects of eucalyptol (1.8-cineole) in bronchial asthma: inhibition of arachidonic acid metabolism in human blood monocytes ex vivo. Eur J Med Res 1998; 3: 407-412
  • 23 Juergens UR, Dethlefsen U, Steinkamp G et al. Anti-inflammatory efficacy of 1.8-cineole (eucalyptole) in bronchial asthma: a placebo-controlled double-blind study. Atemwegs- und Lungenkrankheiten 2003; 29: 561-569 (in German)
  • 24 Worth H, Schacher C, Dethlefsen U. Concomitant therapy with Cineole (Eucalyptole) reduces exacerbations in COPD: a placebo-controlled double-blind trial. Respir Res 2009; 10: 69-76
  • 25 Worth H, Dethlefsen U. Patients with Asthma Benefit from Concomitant Therapy with Cineole: A Placebo-Controlled, Double-Blind Trial. Journal of Asthma 2012; 49: 849-853
  • 26 Juergens UR, Stöber M, Vetter H. Steroidlike inhibition of monocytic arachidonic acid metabolism of IL-1β production by 1.8-cineole. Atemw-Lungenkrkh 1998; 24: 3-11 (in German)
  • 27 Juergens UR, Stöber M, Vetter H. Inhibition of cytokine production and arachidonic acid metabolism by eucalyptol (1.8-cineole) in human blood monocytes in vitro. Eur J Med Res 1998; 3: 508-510
  • 28 Juergens UR, Engelen T, Stöber M et al. Inhibition of cytokine production by 1,8-cineol (eucalyptol) in stimulated human Lymphocytes and monocytes in vitro. Poster presented at: ALA/ATS Int Conference, 16–21/5/2003, Seatly, Washington, USA 2003
  • 29 Juergens UR, Engelen T, Racke K et al. Inhibitory activity of 1,8-cineol (eucalyptol) on cytokine production in cultured human lymphocytes and monocytes. Pulm Pharmacol Ther 2004; 17: 281-287
  • 30 Birben E, Sahiner UM, Sackesen C et al. Oxidative stress and antioxidant defense. World Allergy Organ J 2012; 5: 9-19
  • 31 Rosanna DP, Salvatore C. Reactive oxygen species, inflammation, and lung diseases. Curr Pharm Des 2012; 18: 3889-3890
  • 32 Barnes PJ. Chronic obstructive pulmonary disease. N Engl J Med 2000; 343: 269-280
  • 33 Barnes PJ, Ito K, Adcock IM. Corticosteroid resistance in chronic obstructive disease: inactivation of histone deacetylase. Lancet 2004; 363: 731-733 Review
  • 34 Juergens UR, Gillissen A, Stöber M et al. Antioxidative activity of 1.8-cineol by suppression of 8-isoprostane (8-lsoP) in human monocytes involves inhibition of superoxide anions (02 -) and superoxide dismutases (SODs). Poster presented at: ATS Int Conference, 20–25/5/2005, San Diego, California, USA 2005
  • 35 Juergens UR, Racke K, Tuleta I et al. Antioxidative effects of mono­terpene (1.8-cineol) compared with budesonide (bud) on superoxide (02 ) production in human monocytes: new evidence for co-medication in COPD and sinusitis. Poster presented at: ATS lnt Conference, May 16–20th, 2009, San Diego, CA, USA 2009
  • 36 Thill M, Fischer D, Kelling K et al. Expression of vitamin D receptor (VDR), cyclooxygenase-2 (COX-2) and 15-hydroxyprostaglandin dehydrogenase (15-PGDH) in benign and malignant ovarian tissue and 25-hydroxycholecalciferol (25(OH2) D3) and Prostaglandin E2 (PGE2) serum level in ovarian cancer patients. J Steroid biochem Mol boil 2010; 121: 387-390
  • 37 Salhan D, Hhusain M, Subrati A et al. HIV-induced kidney cell injury: role of ROS-induced downregulated vitamin D receptor. Am J Physiol Renal Physiol 2012; 303: F503-F514
  • 38 Mc Nally P, Coughlan C, Bergsson G et al. Vitamin D receptor agonists inhibit pro-inflammatory cytokine production from the respiratory epithelium in cystic fibrosis. J Cystic fibrosis 2011; 10: 428-434
  • 39 Greiner JFW, Müller J, Zeuner MT et al. 1,8-cineol inhibits nuclear translocation of NF-κB p65 and NF-kB-dependent transcriptional activity. Biochimica et Biophysica Acta 2013; 1833: 2866-2878 DOI: 10.1016/j.bbamcr.2013.07001.
  • 40 Zhou JY, Wang XF, Tang FD et al. Inhibitory effect of 1,8-cineol (eucalyptol) on Egr-1 expression in lipopolysaccharide-stimulated THP-1 cells. Acta Pharmacol Sin 2007; 28: 908-912
  • 41 Sagortchev P, Lukanov J, Beer AM. Assessments of 1.8-cineole effects on histamine receptor activity. Z Phytother 2012; 33 (Suppl. 01) S12-S13 (in German)
  • 42 Coelho-de-Souza LN, Leal-Cardoso JH, de Abreu Matos FJ et al. Relaxant effects of the essential oil of Eucalyptus tereticornis and its main constituent 1,8-cineole on guinea-pig tracheal smooth muscle. Planta Med 2005; 71: 1173-1175
  • 43 Nascimento NR, Refosco RM, Vasconcelos EC et al. 1,8-Cineole induces relaxation in rat and guinea-pig airway smooth muscle. J Pharm Pharmacol 2009; 61: 361-366
  • 44 Bastos VP, Gomes AS, Lima FJ et al. Inhaled 1,8-cineole reduces inflammatory parameters in airways of ovalbumin-challenged Guinea pigs. Basic Clin Pharmacol Toxicol 2011; 108: 34-39
  • 45 Ciftci O, Ozdemir I, Tanyildizi S et al. Antioxidative effects of curcumin, beta-myrcene and 1,8-cineole against 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced oxidative stress in rats liver. Toxicol Ind Health 2011; 27: 447-453
  • 46 Christie PE, Barnes NC. Leukotriene B4 and asthma. Thorax 1996; 51: 1171-1173
  • 47 Hallstrand TS, Henderson Jr WR. An update on the role of leukotrienes in asthma. Curr Opin Allergy Clin Immunol 2010; 10: 60-66
  • 48 Pawlinski R, Pedersen B, Kehrle B et al. Regulation of tissue factor and inflammatory mediators by Egr-1 in a mouse endotoxemia model. Blood 2003; 101: 3940-3947
  • 49 Jun HJ, Hoang MH, Yeo SK et al. Induction of ABCA1 and ABCG1 expression by the liver X receptor modulator cineole in macrophages. Bioorg Med Chem Lett 2013; 23: 579-583
  • 50 Moon HK, Kang P, Lee HS et al. Effects of 1,8-cineole on hypertension induced by chronic exposure to nicotine in rats. J Pharm Pharmacol 2013; DOI: 10.1111/jphp.12195.
  • 51 Lima PR, de Melo TS, Carvalho KM et al. 1,8-cineole (eucalyptol) ameliorates cerulin-induced acute pancreatitis via modulation of cytokines, oxidative stress and NF-κB actitivity in mice. Life Sci 2013; 92: 1195-1201
  • 52 Steinegger E, Hänsel R. Textbook of Pharmacognosy and Phytopharmacy. In (ed.). Berlin, Heidelberg, New York: Springer-Verlag; 1988: 329-331 (in German)
  • 53 Gessner O, Orzechowski G. Toxic- and medicinal plants in middle Europe. In: (ed.). Heidelberg: Carl Winter Universitätsverlag; 1974: 231-330 (in German)
  • 54 Natural Standard. Eucalyptus Oil. 2011 [cited 2011]; Available from: http://www.naturalstandard.com/
  • 55 Wei Q, Harada K, Ohmori S et al. Toxicity study of the volatile constituents of Myoga utilizing acute dermal irritation assays and the Guinea-pig Maximization test. J Occup Health 2006; 48: 480-486
  • 56 Yang Z, Wu N, Fu Y et al. Anti-infectious bronchitis virus (IBV) activity of 1,8-cineole: effect on nucleocapsid (N) protein. J Biomol Struc Dyn 2010; 28: 323-330
  • 57 Soković M, Glamočlija J, Marin PD et al. Antibacterial effects of the essential oils of commonly consumed medicinal herbs using an in vitro model. Molecules 2010; 15: 7532-7546