Intensivmedizin up2date 2014; 10(03): 217-232
DOI: 10.1055/s-0034-1377272
Allgemeine Prinzipien der Intensivmedizin
© Georg Thieme Verlag KG Stuttgart · New York

Pathophysiologie der Sepsis

Christian Ertmer
,
Sebastian Rehberg
Further Information

Publication History

Publication Date:
10 July 2014 (online)

Kernaussagen
  • In den letzten Jahren steigt die Rate an nosokomialen Infektionen und Infektionen mit multiresistenten Erregern.

  • Zentrale Pathomechanismen der Sepsis sind neben der systemischen Inflammation die Koagulopathie, die endotheliale Dysfunktion und die Mikrozirkulationsstörung. Diese sind eng miteinander verzahnt und sollten lediglich zu didaktischen Zwecken isoliert betrachtet werden.

  • Die Immunantwort wird induziert durch die Erkennung exogener und endogener Virulenzfaktoren durch spezifische Oberflächenrezeptoren auf immunkompetenten Zellen.

  • Der infektassoziierten Depression des Immunsystems ist ein mindestens ebenso hoher Stellenwert wie der in der Initialphase klinisch offenkundigen Inflammation beizumessen.

  • Die septische Koagulopathie beinhaltet nicht nur eine Aktivierung prothrombotischer Kaskaden, sondern auch eine Abschwächung gerinnungshemmender Mechanismen und eine Unterdrückung des Fibrinolysesystems.

  • Die endotheliale Dysfunktion führt zu einer Vasodilatation, einem Kapillarleck mit konsekutiver Ödembildung sowie zu proinflammatorischen und thrombogenen Stimuli.

  • Die Mikrozirkulationsstörung ist durch eine „heterogene Perfusion“ charakterisiert. Neben normal perfundierten Bereichen gibt es Areale mit reduzierter oder erloschener Perfusion, aber auch solche mit deutlich erhöhtem arteriolärem Blutfluss.

  • Die Orientierung der supportiven hämodynamischen Therapie an Parametern der Makrodynamik wird zunehmend kritisch hinterfragt. Neue Techniken ermöglichen mittlerweile die bettseitige Überwachung der Mikrozirkulation.

  • Die „zytopathische Hypoxie“, also die Störung des zellulären Energiestoffwechsels trotz normalem bis supranormalem Sauerstoffpartialdruck, ist hauptverantwortlich für die sepsisassoziierte Einschränkung der Organfunktionen.

Die Literatur zu diesem Beitrag finden Sie unter http://dx.doi.org/10.1055/s-0034-1377272.

 
  • Literatur

  • 1 Martin GS, Mannino DM, Eaton S et al. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 2003; 348: 1546-1554
  • 2 Engel C, Brunkhorst FM, Bone HG et al. Epidemiology of sepsis in Germany: results from a national prospective multicenter study. Intensive Care Med 2007; 33: 606-618
  • 3 Vincent JL, Rello J, Marshall J et al. International study of the prevalence and outcomes of infection in intensive care units. JAMA 2009; 302: 2323-2329
  • 4 Opal SM, Garber GE, LaRosa SP et al. Systemic host responses in severe sepsis analyzed by causative microorganism and treatment effects of drotrecogin alfa (activated). Clin Infect Dis 2003; 37: 50-58
  • 5 Martin GS. Sepsis, severe sepsis and septic shock: changes in incidence, pathogens and outcomes. Expert Rev Anti Infect Ther 2012; 10: 701-706
  • 6 Matzinger P. Tolerance, danger, and the extended family. Annu Rev Immunol 1994; 12: 991-1045
  • 7 Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell 2010; 140: 805-820
  • 8 Chan JK, Roth J, Oppenheim JJ et al. Alarmins: awaiting a clinical response. J Clin Invest 2012; 122: 2711-2719
  • 9 Reid VL, Webster NR. Role of microparticles in sepsis. Br J Anaesth 2012; 109: 503-513
  • 10 Cinel I, Opal SM. Molecular biology of inflammation and sepsis: a primer. Crit Care Med 2009; 37: 291-304
  • 11 Russell JA, Boyd J, Nakada T et al. Molecular mechanisms of sepsis. Contrib Microbiol 2011; 17: 48-85
  • 12 Kawai T, Akira S. The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol 2009; 21: 317-337
  • 13 Opal SM, Laterre PF, Francois B et al. Effect of eritoran, an antagonist of MD2-TLR4, on mortality in patients with severe sepsis: the ACCESS randomized trial. JAMA 2013; 309: 1154-1162
  • 14 Kawai J, Ando K, Shimosawa T et al. Regional hemodynamic effects of adrenomedullin in Wistar rats: a comparison with calcitonin gene-related peptide. Hypertens Res 2002; 25: 441-446
  • 15 Salomao R, Brunialti MK, Rapozo MM et al. Bacterial sensing, cell signaling, and modulation of the immune response during sepsis. Shock 2012; 38: 227-242
  • 16 Cavaillon JM, Adib-Conquy M, Fitting C et al. Cytokine cascade in sepsis. Scandinavian journal of infectious diseases 2003; 35: 535-544
  • 17 Bone RC. Sir Isaac Newton, sepsis, SIRS, and CARS. Crit Care Med 1996; 24: 1125-1128
  • 18 Andersson U, Tracey KJ. Reflex principles of immunological homeostasis. Annual review of immunology 2012; 30: 313-335
  • 19 Rosas-Ballina M, Olofsson PS, Ochani M et al. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 2011; 334: 98-101
  • 20 Boomer JS, To K, Chang KC et al. Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA 2011; 306: 2594-2605
  • 21 Fourrier F. Severe sepsis, coagulation, and fibrinolysis: dead end or one way?. Crit Care Med 2012; 40: 2704-2708
  • 22 Hardaway RM, Williams CH, Vasquez Y. Disseminated intravascular coagulation in sepsis. Semin Thromb Hemost 2001; 27: 577-583
  • 23 Russell JA. Management of sepsis. N Engl J Med 2006; 355: 1699-1713
  • 24 Schouten M, Wiersinga WJ, Levi M et al. Inflammation, endothelium, and coagulation in sepsis. J Leukoc Biol 2008; 83: 536-545
  • 25 Ruf W. New players in the sepsis-protective activated protein C pathway. J Clin Invest 2010; 120: 3084-3087
  • 26 Uchiba M, Okajima K, Murakami K. Effects of various doses of antithrombin III on endotoxin-induced endothelial cell injury and coagulation abnormalities in rats. Thromb Res 1998; 89: 233-241
  • 27 Kaneider NC, Forster E, Mosheimer B et al. Syndecan-4-dependent signaling in the inhibition of endotoxin-induced endothelial adherence of neutrophils by antithrombin. Thromb Haemost 2003; 90: 1150-1157
  • 28 Justus AC, Roussev R, Norcross JL et al. Antithrombin binding by human umbilical vein endothelial cells: effects of exogenous heparin. Thromb Res 1995; 79: 175-186
  • 29 Fourrier F, Chopin C, Goudemand J et al. Septic shock, multiple organ failure, and disseminated intravascular coagulation. Compared patterns of antithrombin III, protein C, and protein S deficiencies. Chest 1992; 101: 816-823
  • 30 Warren BL, Eid A, Singer P et al. Caring for the critically ill patient. High-dose antithrombin III in severe sepsis: a randomized controlled trial. JAMA 2001; 286: 1869-1878
  • 31 Bernard GR, Vincent JL, Laterre PF et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 2001; 344: 699-709
  • 32 Ranieri VM, Thompson BT, Barie PS et al. Drotrecogin alfa (activated) in adults with septic shock. N Engl J Med 2012; 366: 2055-2064
  • 33 Jourdain M, Carrette O, Tournoys A et al. Effects of inter-alpha-inhibitor in experimental endotoxic shock and disseminated intravascular coagulation. Am J Respir Crit Care Med 1997; 156: 1825-1833
  • 34 Raaphorst J, Johan GroeneveldAB, Bossink AW et al. Early inhibition of activated fibrinolysis predicts microbial infection, shock and mortality in febrile medical patients. Thromb Haemost 2001; 86: 543-549
  • 35 Martin K, Borgel D, Lerolle N et al. Decreased ADAMTS-13 (A disintegrin-like and metalloprotease with thrombospondin type 1 repeats) is associated with a poor prognosis in sepsis-induced organ failure. Crit Care Med 2007; 35: 2375-2382
  • 36 Reinhart K, Bayer O, Brunkhorst F et al. Markers of endothelial damage in organ dysfunction and sepsis. Crit Care Med 2002; 30 (Suppl. 05) 302-312
  • 37 Levi M, van der Poll T. Inflammation and coagulation. Crit Care Med 2010; 38 (Suppl. 02) 26-34
  • 38 Coughlin SR. Thrombin signalling and protease-activated receptors. Nature 2000; 407: 258-264
  • 39 Sharawy N. Vasoplegia in septic shock: Do we really fight the right enemy?. J Crit Care 2014; 29: 83-87
  • 40 De Backer D, Orbegozo Cortes D, Donadello K et al. Pathophysiology of microcirculatory dysfunction and the pathogenesis of septic shock. Virulence 2014; 5: 73-79
  • 41 van der Heijden M, Pickkers P, van Nieuw Amerongen GP et al. Circulating angiopoietin-2 levels in the course of septic shock: relation with fluid balance, pulmonary dysfunction and mortality. Intensive Care Med 2009; 35: 1567-1574
  • 42 Kumpers P, Lukasz A, David S et al. Excess circulating angiopoietin-2 is a strong predictor of mortality in critically ill medical patients. Crit Care 2008; 12: R147
  • 43 Dejana E, Orsenigo F, Lampugnani MG. The role of adherens junctions and VE-cadherin in the control of vascular permeability. J Cell Sci 2008; 121: 2115-2122
  • 44 Kumar P, Shen Q, Pivetti CD et al. Molecular mechanisms of endothelial hyperpermeability: implications in inflammation. Expert Rev Mol Med 2009; 11: e19
  • 45 Zarbock A, Ley K. Mechanisms and consequences of neutrophil interaction with the endothelium. Am J Pathol 2008; 172: 1-7
  • 46 Marechal X, Favory R, Joulin O et al. Endothelial glycocalyx damage during endotoxemia coincides with microcirculatory dysfunction and vascular oxidative stress. Shock 2008; 29: 572-576
  • 47 Tyml K, Wang X, Lidington D et al. Lipopolysaccharide reduces intercellular coupling in vitro and arteriolar conducted response in vivo. Am J Physiol Heart Circ Physiol 2001; 281: H1397-1406
  • 48 Hernandez G, Bruhn A, Ince C. Microcirculation in sepsis: new perspectives. Curr Vasc Pharmacol 2013; 11: 161-169
  • 49 Klijn E, Den UilCA, Bakker J et al. The heterogeneity of the microcirculation in critical illness. Clinics in chest medicine 2008; 29: 643-654, viii
  • 50 Ellis CG, Bateman RM, Sharpe MD et al. Effect of a maldistribution of microvascular blood flow on capillary O(2) extraction in sepsis. Am J Physiol Heart Circ Physiol 2002; 282: H156-164
  • 51 De Backer D, Creteur J, Dubois MJ et al. The effects of dobutamine on microcirculatory alterations in patients with septic shock are independent of its systemic effects. Crit Care Med 2006; 34: 403-408
  • 52 Pottecher J, Deruddre S, Teboul JL et al. Both passive leg raising and intravascular volume expansion improve sublingual microcirculatory perfusion in severe sepsis and septic shock patients. Intensive Care Med 2010; 36: 1867-1874
  • 53 Pope JV, Jones AE, Gaieski DF et al. Multicenter study of central venous oxygen saturation (ScvO(2)) as a predictor of mortality in patients with sepsis. Ann Emerg Med 2010; 55: 40-46 e41
  • 54 Reggiori G, Occhipinti G, De Gasperi A et al. Early alterations of red blood cell rheology in critically ill patients. Crit Care Med 2009; 37: 3041-3046
  • 55 Yuruk K, Almac E, Bezemer R et al. Blood transfusions recruit the microcirculation during cardiac surgery. Transfusion 2011; 51: 961-967
  • 56 Sharshar T, Blanchard A, Paillard M et al. Circulating vasopressin levels in septic shock. Crit Care Med 2003; 31: 1752-1758
  • 57 MacKenzie IM. The haemodynamics of human septic shock. Anesthesia 2001; 56: 130-144
  • 58 Weng L, Liu YT, Du B et al. The prognostic value of left ventricular systolic function measured by tissue Doppler imaging in septic shock. Crit Care 2012; 16: R71
  • 59 Muller-Werdan U, Buerke M, Ebelt H et al. Septic cardiomyopathy - A not yet discovered cardiomyopathy?. Exp Clin Cardiol 2006; 11: 226-236
  • 60 Morelli A, Ertmer C, Westphal M et al. Effect of heart rate control with esmolol on hemodynamic and clinical outcomes in patients with septic shock: a randomized clinical trial. JAMA 2013; 310: 1683-1691
  • 61 Dunser MW, Takala J, Brunauer A et al. Re-thinking resuscitation: leaving blood pressure cosmetics behind and moving forward to permissive hypotension and a tissue perfusion-based approach. Crit Care 2013; 17: 326
  • 62 Bruegger D, Jacob M, Rehm M et al. Atrial natriuretic peptide induces shedding of endothelial glycocalyx in coronary vascular bed of guinea pig hearts. Am J Physiol Heart Circ Physiol 2005; 289: H1993-1999
  • 63 Hotchkiss RS, Swanson PE, Freeman BD et al. Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Crit Care Med 1999; 27: 1230-1251
  • 64 Boekstegers P, Weidenhofer S, Kapsner T et al. Skeletal muscle partial pressure of oxygen in patients with sepsis. Crit Care Med 1994; 22: 640-650
  • 65 VanderMeer TJ, Wang H, Fink MP. Endotoxemia causes ileal mucosal acidosis in the absence of mucosal hypoxia in a normodynamic porcine model of septic shock. Crit Care Med 1995; 23: 1217-1226
  • 66 Fink M. Cytopathic hypoxia in sepsis. Acta Anaesthesiol Scand Suppl 1997; 110: 87-95
  • 67 Levy B, Desebbe O, Montemont C et al. Increased aerobic glycolysis through beta2 stimulation is a common mechanism involved in lactate formation during shock states. Shock 2008; 30: 417-421
  • 68 Nicholls P, Marshall DC, Cooper CE et al. Sulfide inhibition of and metabolism by cytochrome c oxidase. Biochemical Society transactions 2013; 41: 1312-1316
  • 69 Frost MT, Wang Q, Moncada S et al. Hypoxia accelerates nitric oxide-dependent inhibition of mitochondrial complex I in activated macrophages. Am J Physiol Regul Integr Comp Physiol 2005; 288: R394-400
  • 70 Singer M. Cellular dysfunction in sepsis. Clinics in chest medicine 2008; 29: 655-660, viii-ix
  • 71 Langenberg C, Bellomo R, May C et al. Renal blood flow in sepsis. Crit Care 2005; 9: R363-374
  • 72 Thurau K, Boylan JW. Acute renal success. The unexpected logic of oliguria in acute renal failure. Am J Med 1976; 61: 308-315
  • 73 Mullens W, Abrahams Z, Francis GS et al. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol 2009; 53: 589-596
  • 74 Herrler T, Tischer A, Meyer A et al. The intrinsic renal compartment syndrome: new perspectives in kidney transplantation. Transplantation 2010; 89: 40-46
  • 75 Boyd JH, Forbes J, Nakada TA et al. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med 2011; 39: 259-265
  • 76 Ronco C, Rosner MH. Acute kidney injury and residual renal function. Crit Care 2012; 16: 144
  • 77 Bosch JP, Saccaggi A, Lauer A et al. Renal functional reserve in humans. Effect of protein intake on glomerular filtration rate. Am J Med 1983; 75: 943-950