Synlett 2015; 26(02): 193-196
DOI: 10.1055/s-0034-1379550
letter
© Georg Thieme Verlag Stuttgart · New York

Regioselective Formation of 5-Methylene-6-methoxy-1,4,5,6-tetrahydropyridazines from the [4+2]-Cycloaddition Reaction of In Situ Generated 1,2-Diaza-1,3-dienes with Methoxyallene

Orazio A. Attanasi
Department of Biomolecular Sciences, Section of Organic Chemistry and Organic Natural Compounds, University of Urbino ‘Carlo Bo’, Via I Maggetti 24, 61029 Urbino (PU), Italy
,
Gianfranco Favi*
Department of Biomolecular Sciences, Section of Organic Chemistry and Organic Natural Compounds, University of Urbino ‘Carlo Bo’, Via I Maggetti 24, 61029 Urbino (PU), Italy
,
Fabio Mantellini
Department of Biomolecular Sciences, Section of Organic Chemistry and Organic Natural Compounds, University of Urbino ‘Carlo Bo’, Via I Maggetti 24, 61029 Urbino (PU), Italy
,
Serena Mantenuto
Department of Biomolecular Sciences, Section of Organic Chemistry and Organic Natural Compounds, University of Urbino ‘Carlo Bo’, Via I Maggetti 24, 61029 Urbino (PU), Italy
,
Giada Moscatelli
Department of Biomolecular Sciences, Section of Organic Chemistry and Organic Natural Compounds, University of Urbino ‘Carlo Bo’, Via I Maggetti 24, 61029 Urbino (PU), Italy
,
Simona Nicolini
Department of Biomolecular Sciences, Section of Organic Chemistry and Organic Natural Compounds, University of Urbino ‘Carlo Bo’, Via I Maggetti 24, 61029 Urbino (PU), Italy
› Author Affiliations
Further Information

Publication History

Received: 25 September 2014

Accepted after revision: 25 October 2014

Publication Date:
21 November 2014 (online)


Abstract

A regioselective inverse-electron-demand hetero-Diels–­Alder reaction of in situ generated 1,2-diaza-1,3-dienes with methoxyallene is reported. These Lewis and Brønsted acid free reactions benefit from operational simplicity and allow access to synthetically valuable 5-methylene-6-methoxy-1,4,5,6-tetrahydropyridazines in high yields.

 
  • References and Notes

  • 1 Carboni RA, Lindsey RV. J. Am. Chem. Soc. 1959; 81: 4342

    • For reviews, see:
    • 2a Jiang X, Wang R. Chem. Rev. 2013; 113: 5515
    • 2b Pellissier H. Tetrahedron 2009; 65: 2839
    • 2c Buonora P, Olsen J.-C, Oh T. Tetrahedron 2001; 57: 6099
    • 2d Jørgensen KA. Angew. Chem. Int. Ed. 2000; 39: 3558
    • 2e Behforouz M, Ahmadian M. Tetrahedron 2000; 56: 5259
    • 2f Boger DL. Comprehensive Organic Synthesis . Vol. 5. Trost BM, Flemming I, Paquette LA. Chap. 4.1 Pergamon; Oxford: 1991: 451

      For some examples, see:
    • 3a Gu J, Ma C, Li Q.-Z, Du W, Chen Y.-C. Org. Lett. 2014; 16: 3986
    • 3b de los Santos JM, Ignacio R, Es Sbai Z, Aparacio D, Palacios F. J. Org. Chem. 2014; 79: 7607
    • 3c Kessler SN, Wegner HA. Org. Lett. 2010; 12: 4062
    • 3d Gallier F, Hussain H, Martel A, Kirschning A, Dujardin G. Org. Lett. 2009; 11: 3060
    • 3e Esquivias J, Arrayás RG, Carretero JC. J. Am. Chem. Soc. 2007; 129: 1480
    • 3f Akiyama T, Morita H, Fuchibe K. J. Am. Chem. Soc. 2006; 128: 13070
    • 3g Juhl K, Jørgensen KA. Angew. Chem. Int. Ed. 2003; 42: 1498

      For reviews on the chemistry of DD, see:
    • 4a Lemos A In Targets in Heterocyclic Systems – Chemistry and Properties . Vol. 14. Attanasi OA, Spinelli D. Società Chimica Italiana; Rome: 2010: 1
    • 4b Attanasi OA, De Crescentini L, Favi G, Filippone P, Mantellini F, Perrulli FR, Santeusanio S. Eur. J. Org. Chem. 2009; 3109

    • For some recent examples, see:
    • 4c Attanasi OA, De Crescentini L, Favi G, Mantellini F, Mantenuto S, Nicolini S. J. Org. Chem. 2014; 79: 8331
    • 4d Gao S, Chen J.-R, Hu X.-Q, Cheng H.-G, Lu L.-Q, Xiao W.-J. Adv. Synth. Catal. 2013; 355: 3539
    • 4e Attanasi OA, Favi G, Geronikaki A, Mantellini F, Moscatelli G, Paparisva A. Org. Lett. 2013; 15: 2624
    • 4f Attanasi OA, Bianchi L, Campisi LA, De Crescentini L, Favi G, Mantellini F. Org. Lett. 2013; 15: 3646
    • 4g Attanasi OA, Bartoccini S, Favi G, Giorgi G, Perrulli FR, Santeusanio S. J. Org. Chem. 2012; 77: 1161
    • 4h Hatcher JM, Coltart DM. J. Am. Chem. Soc. 2010; 132: 4546
  • 5 Chen J.-R, Dong W.-R, Candy M, Pan F.-F, Jörres M, Bolm C. J. Am. Chem. Soc. 2012; 134: 6924
  • 6 Tong M.-C, Chen X, Li J, Huang R, Tao H, Wang C.-J. Angew. Chem. Int. Ed. 2014; 53: 1
  • 7 Hu X.-Q, Chen J.-R, Gao S, Feng B, Lu L.-Q, Xiao W.-J. Chem. Commun. 2013; 49: 7905
  • 8 Pulz R. Synlett 2000; 1697

    • For reviews on the chemistry of allenes, see:
    • 9a Tius MA. Chem. Soc. Rev. 2014; 43: 2979
    • 9b Ma S. Aldrichimica Acta 2007; 40: 91
    • 9c Krause N, Hasmi AS. K. Modern Allene Chemistry. Vols. 1 and 2. Wiley-VCH; Weinheim: 2004
    • 9d Zimmer R. Synthesis 1992; 165
    • 10a Boger DL, Curran TT. J. Org. Chem. 1990; 55: 5439
    • 10b Boger DL, Kasper A. J. Am. Chem. Soc. 1989; 111: 1517
    • 10c Boger DL, Robarge KD. J. Org. Chem. 1988; 53: 3373
  • 11 Tietze LF, Meier H, Nutt H. Chem. Ber. 1989; 122: 643
  • 12 Conrads M, Mattay J, Runsink J. Chem. Ber. 1989; 122: 2207
    • 13a Zimmer R, Collas M, Czerwonka R, Hain U, Reissig H.-U. Synthesis 2008; 237
    • 13b Arnold T, Orschel B, Reissig H.-U. Angew. Chem., Int. Ed. Engl. 1992; 31: 1033
    • 13c Zimmer R, Reissig H.-U. Liebigs Ann. Chem. 1991; 553
    • 13d Zimmer R, Reissig H.-U. Angew. Chem. 1988; 100: 1576
    • 14a Lange JH. M, den Hartog AP, van der Neut MA, van Vliet BJ, Kruse CG. Bioorg. Med. Chem. Lett. 2009; 19: 5675
    • 14b Osborn HM. I, Coisson D. Mini-Rev. Org. Chem. 2004; 1: 41
    • 14c Lednicer D, Ronaix A In Organic Chemistry of Drug Synthesis . Vol. 2. Wiley-Interscience; New York: 1998: 304
    • 14d Leonhardt SS, Edwards DP. Exp. Biol. Med. 2002; 227: 969
    • 14e Palmer S, Campen CA, Allan GF, Rybczynski P, Haynes-Johnson D, Hutchins A, Kraft P, Kiddoe M, Lai M.-T, Lombardi E, Pedersen P, Hodgen G, Combs DW. J. Steroid Biochem. Mol. Biol. 2000; 75: 33
    • 14f Rybczynski PJ, Combs DW, Jacobs K, Shank RP, Dubinsky B. J. Med. Chem. 1999; 42: 2403
    • 14g Lednicer D. Strategies for Organic Drug Synthesis and Design . Wiley-Interscience; New York: 1998: 257
    • 14h Combs DW, Reese K, Phillips A. J. Med. Chem. 1995; 38: 4878
    • 14i Combs DW, Reese K, Phillips A. J. Med. Chem. 1995; 38: 4880
    • 14j Combs DW. WO 94001412, 1994 ; Chem. Abstr. 1994, 122, 31542

      For some examples of tetrahydropyridazine synthesis from DD, see:
    • 15a Attanasi OA, Favi G, Giorgi G, Mantellini F, Moscatelli G, Piersanti G. Curr. Org. Synth. 2013; 10: 803
    • 15b Attanasi OA, Bianchi L, D’Auria M, Mantellini F, Racioppi R. Curr. Org. Synth. 2013; 10: 631
    • 15c Lopes SM. M, Brigas AF, Palacios F, Lemos A, Pinho e Melo TM. V. D. Eur. J. Org. Chem. 2012; 2152
    • 15d Yang H.-T, Wang G.-W, Xu Y, Huang J.-C. Tetrahedron Lett. 2006; 47: 4129
    • 15e Gaonkar SL, Rai KM. L. Tetrahedron Lett. 2005; 46: 5969
    • 15f Palacios F, Aparicio D, López Y, de los Santos JM, Alonso C. Eur. J. Org. Chem. 2005; 1142
    • 15g Zhang L, Williams MA, Mendel DB, Escarpe PA, Chen X, Wang K.-Y, Graves BJ, Lawton G, Kim CU. Bioorg. Med. Chem. Lett. 1999; 9: 1751

    • For other recent syntheses of tetrahydropyridazines, see:
    • 15h Handy EL, Totaro KA, Lin CP, Sello JK. Org. Lett. 2014; 16: 3488
    • 15i Xu X, Zavalij PY, Doyle MP. Angew. Chem. Int. Ed. 2013; 52: 12664
    • 15j Xu X, Zavalij PY, Doyle MP. Angew. Chem. Int. Ed. 2012; 51: 9829
    • 15k Shapiro ND, Shi Y, Toste FD. J. Am. Chem. Soc. 2009; 131: 11654
    • 17a Banert K, Hagedorn M. Tetrahedron Lett. 1992; 33: 7331
    • 17b Gilchrist TL, Wasson RC. J. Chem. Soc., Perkin Trans. 1 1987; 2511
    • 17c Curtin DY, Tristram EW. J. Am. Chem. Soc. 1950; 72: 5238
  • 18 Typical ProcedureTo a CH2Cl2 (3 mL) solution of N-acyl hydrazone 1a (0.150 g, 0.5 mmol) were added methoxyallene (2a, 0.258 g, 3.5 mmol) and Na2CO3 (0.265 g, 2.5 mmol) at 25 °C until complete disappearance of 1a (TLC monitoring, 30 h). After removal of the solvent, the residue was purified directly by flash column chromatography (silica gel, cyclohexane–EtOAc, 90:10) to give the corresponding 1,4,5,6-tetrahydropyridazine 3a as a pale yellow oil (0.134 g, 98%).
  • 19 Ethyl 6-Methoxy-5-methylene-3-phenyl-5,6-dihydropyridazine-1(4H)-carboxylate (3a) 1H NMR (400 MHz, CDCl3): δ = 1.40 (t, J = 7.2 Hz, 3 H), 3.30 (d, 2 J = 19.6 Hz, 1 H), 3.39 (s, 3 H), 3.52 (dt, 2 J = 19.6 Hz, 4 J = 2.8 Hz, 1 H), 4.30–4.41 (m, 2 H), 5.12 (d, 2 J = 2.8 Hz, 1 H), 5.26 (d, 2 J = 2.8 Hz, 1 H), 5.79 (s, 1 H), 7.35–7.41 (m, 3 H), 7.77–7.81 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 14.5 (q), 28.9 (t), 54.9 (q), 62.8 (t), 82.6 (d), 113.5 (t), 125.6 (d), 128.3 (d), 129.4 (d), 134.5 (s), 136.4 (s), 147.5 (s), 155.0 (s). IR (nujol): νmax = 1714. MS: m/z (%) = 274 (88), 257 (91), 249 (100), 235 (45). Anal. Calcd for C15H18N2O3 (274.32): C, 65.68; H, 6.61; N, 10.21. Found: C, 65.55; H, 6.58; N, 10.30.