Synlett 2015; 26(08): 1124-1130
DOI: 10.1055/s-0034-1380186
letter
© Georg Thieme Verlag Stuttgart · New York

Highly Regioselective Arylation of 1,2,3-Triazole N-Oxides with Sodium Arenesulfinates via Palladium-Catalyzed Desulfitative Cross-Coupling Reaction

Jiayi Zhu
Department of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, P. R. of China
,
Yu Chen
Department of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, P. R. of China
,
Feng Lin
Department of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, P. R. of China
,
Baoshuang Wang
Department of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, P. R. of China
,
Qing Huang*
Department of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, P. R. of China
,
Liangxian Liu*
Department of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, P. R. of China
› Author Affiliations
Further Information

Publication History

Received: 15 December 2014

Accepted after revision: 30 January 2015

Publication Date:
05 March 2015 (online)


Abstract

A convenient and highly regioselective palladium-catalyzed direct C5-arylation of 1,2,3-triazole N-oxides was developed in the presence of silver carbonate and tripotassium phosphate. This protocol allowed use of sodium arylsulfinates, diphenylphosphine oxide, and triphenylphosphine as arylating reagents to produce 2-aryl-5-aryl-1,2,3-triazole N-oxides in good to excellent yields, providing a complement to the existing methods for the direct arylation of 1,2,3-triazole N-oxides.

Supporting Information

Primary Data

 
  • References and Notes


    • For reviews on biaryl syntheses, see:
    • 1a Bringmann G, Price Mortimer AJ, Keller PA, Gresser MJ, Garner J, Breuning M. Angew. Chem. Int. Ed. 2005; 44: 5384
    • 1b Corbet JP, Mignani G. Chem. Rev. 2006; 106: 2651
    • 1c Ackermann L, Vicente R, Kapdi AR. Angew. Chem. Int. Ed. 2009; 48: 9792

      For recent reviews on C–H bond functionalizations, see:
    • 2a Colby DA, Bergman RG, Ellman JA. Chem. Rev. 2010; 110: 624
    • 2b Alberico D, Scott ME, Lautens M. Chem. Rev. 2007; 107: 174
    • 2c Seregin IV, Gevorgyan V. Chem. Soc. Rev. 2007; 36: 1173
    • 2d Ackermann L. Synlett 2007; 507

      For selected examples of direct arylation by using aryl halides, see:
    • 3a Do H, Daugulis O. J. Am. Chem. Soc. 2007; 129: 12404
    • 3b Huang J, Chan J, Chen Y, Borths C, Kyle K, Larsen R, Margaret M. J. Am. Chem. Soc. 2010; 132: 3674
    • 3c Shibahara F, Yamaguchi E, Murai T. Chem. Commun. 2010; 46: 2471
    • 3d Turner GL, Morris JA, Greaney MF. Angew. Chem. Int. Ed. 2007; 46: 7996
    • 3e Canivet J, Yamaguchi J, Ban I, Itami K. Org. Lett. 2009; 11: 1733
    • 3f Nadres ET, Lazareva A, Daugulis O. J. Org. Chem. 2011; 76: 471
    • 4a Hachiya H, Hirano K, Satoh T, Miura M. Angew. Chem. Int. Ed. 2010; 49: 2202
    • 4b Han W, Mayer P, Ofial AR. Chem. Eur. J. 2011; 17: 6904

      For selected examples of direct arylation by using aryl boronic acids, see:
    • 5a Yang F, Xu Z, Wang Z, Yu Z, Wang R. Chem. Eur. J. 2011; 17: 6321
    • 5b Yang S.-D, Sun C.-L, Fang Z, Li B.-J, Li Y.-Z, Shi Z.-J. Angew. Chem. Int. Ed. 2008; 47: 1473
    • 5c Kirchberg S, Tani S, Ueda K, Yamaguchi J, Studer A, Itami K. Angew. Chem. Int. Ed. 2011; 50: 2387
    • 5d Bedford RB, Gower NJ, Haddow MF, Harvey JN, Nunn J, Okopie RA, Sankey RF. Angew. Chem. Int. Ed. 2012; 51: 5435
    • 5e Maity P, Shacklady-McAtee DM, Yap GP. A, Siriann ER, Watson MP. J. Am. Chem. Soc. 2013; 135: 280
    • 6a Zhang F.-Z, Greaney MF. Angew. Chem. Int. Ed. 2010; 49: 2768
    • 6b Zhou J, Hu P, Zhang M, Huang S, Wang M, Su W. Chem. Eur. J. 2010; 16: 5876
    • 6c Xie K, Yang Z, Zhou X, Li X, Wang S, Tan Z, An X, Guo C.-C. Org. Lett. 2010; 12: 1564
    • 6d Cornella J, Lu P, Larrosa I. Org. Lett. 2009; 11: 5506
    • 7a Roger J, Doucet H. Org. Biomol. Chem. 2008; 6: 169
    • 7b So CM, Lau CP, Kwong FY. Chem. Eur. J. 2011; 17: 761
    • 7c Ackermann L, Barfusser S, Pospech J. Org. Lett. 2010; 12: 724
    • 8a Miao T, Wang L. Adv. Synth. Catal. 2014; 356: 429
    • 8b Miao T, Wang L. Adv. Synth. Catal. 2014; 356: 967
    • 8c Wu M.-Y, Luo J.-Y, Xiao F.-H, Zhang S.-F, Deng G.-J, Luo H.-A. Adv. Synth. Catal. 2012; 354: 335
    • 8d Rao H.-H, Yang Y, Shuai Q, Li C.-J. Adv. Synth. Catal. 2011; 353: 1701
    • 8e Wang G.-W, Miao T. Chem. Eur. J. 2011; 17: 5787
    • 8f Liu J, Zhou X.-Y, Rao H.-H, Xiao F.-H, Li C.-J, Deng G.-J. Chem. Eur. J. 2011; 17: 7996
    • 8g Liu B, Guo Q, Cheng Y.-Y, Lan J.-B, You J.-S. Chem. Eur. J. 2011; 17: 13415
    • 8h Miao T, Li P.-H, Wang G.-W, Wang L. Chem. Asian J. 2013; 8: 3185
    • 8i Chen R, Liu S.-W, Liu X.-H, Yang L, Deng G.-J. Org. Biomol. Chem. 2011; 9: 7675
    • 8j Miao T, Wang G.-W. Chem. Commun. 2011; 47: 9501
    • 8k Zhou X.-Y, Luo J.-Y, Liu J, Peng S.-M, Deng G.-J. Org. Lett. 2011; 13: 1432
    • 8l Zhao F, Xiao F.-H, Zhang S.-F, Deng G.-J. Org. Lett. 2013; 15: 1520
    • 8m Wang H.-F, Li Y.-M, Zhang R, Jin K, Zhao D.-F, Duan C.-Y. J. Org. Chem. 2012; 77: 4849
    • 8n Hu S, Xia P, Cheng K, Qi C.-Z. Appl. Organomet. Chem. 2013; 27: 188
    • 8o Wang M, Li D.-K, Zhou W, Wang L. Tetrahedron 2012; 68: 1926
  • 10 Amantini D, Fringuelli F, Piermatti O, Pizzo F, Zunino E, Vaccaro L. J. Org. Chem. 2005; 70: 6526
    • 11a Mamidyala SK, Finn MG. Chem. Soc. Rev. 2010; 39: 1252
    • 11b Agalave SG, Maujan SR, Pore VS. Chem. Asian J. 2011; 6: 2696
  • 12 Dorlars A, Schellhammer CW, Schroeder J. Angew. Chem., Int. Ed. Engl. 1975; 14: 665

    • For recent reviews, see:
    • 13a Krivopalov VP, Shkurko OP. Russ. Chem. Rev. 2005; 74: 339
    • 13b Piribi I, Buscemi S. Curr. Bioact. Compd. 2010; 6: 208
    • 14a Liu W, Li Y.-H, Xu B, Kuang C.-X. Org. Lett. 2013; 15: 2342
    • 14b Liu W, Li Y.-H, Wang Y, Kuang C.-X. Org. Lett. 2013; 15: 4682
    • 15a Chen Z.-W, Luo M.-T, Wen Y.-L, Luo G.-T, Liu L.-X. Org. Lett. 2014; 16: 3020
    • 15b Qin W.-B, Zhu J.-Y, Kong Y.-B, Bao Y.-H, Chen Z.-W, Liu L.-X. Org. Biomol. Chem. 2014; 12: 4252
    • 15c Bao Y.-H, Zhu J.-Y, Qin W.-B, Kong Y.-B, Chen Z.-W, Tang S.-B, Liu L.-X. Org. Biomol. Chem. 2013; 11: 7938
    • 15d Qin W.-B, Chang Q, Bao Y.-H, Wang N, Chen Z.-W, Liu L.-X. Org. Biomol. Chem. 2012; 10: 8814
  • 16 Rao B, Zhang W.-X, Hu L, Luo M.-M. Green Chem. 2012; 14: 3436
    • 17a Morimoto H, Yoshino T, Yukawa T, Lu G, Matsunaga S, Shibasaki M. Angew. Chem. Int. Ed. 2008; 47: 9125
    • 17b Lu X.-Y, Zhang C.-M, Xu Z.-R. Acc. Chem. Res. 2001; 34: 535
    • 18a Rummelt SM, Ranocchiari M, van Bokhoven JA. Org. Lett. 2012; 14: 2188
    • 18b Zhang X.-H, Liu H.-Z, Hu X.-M, Tang G, Zhu J, Zhao Y.-F. Org. Lett. 2011; 13: 3478
    • 18c Zhuang R.-Q, Xu J, Cai Z.-S, Tang G, Fang M.-J, Zhao Y.-F. Org. Lett. 2011; 13: 2110
    • 18d Andaloussi M, Lindh J, Sävmarker J, Sjöberg PJ. R, Larhed M. Chem. Eur. J. 2009; 15: 13069
  • 19 Baba K, Tobisu M, Chatani N. Angew. Chem. Int. Ed. 2013; 52: 11892
  • 20 General Procedure for the Preparation of 2-Aryl-5-aryl-1,2,3-triazole N-Oxides To a solution of 2-aryl-1,2,3-triazole N-oxide (0.2 mmol), Pd(OAc)2 (0.01 mmol), Ag2CO3 (0.2 mmol), 1,10-phenanthroline (0.08 mmol), and K3PO4 (0.4 mmol) in a mixed solvent of DME–DMF (3:7 v/v, 1 mL) was added sodium arylsulfinate (0.24 mmol) under an air atmosphere, and the mixture was stirred at 80 °C for 12 h. The reaction mixture was concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (eluent: EtOAc–PE, 1:4) to yield the corresponding product 6. All products were characterized by MS, IR, 1H NMR, and 13C NMR spectroscopy.
  • 21 Selected Physical and Spectral data for 2-Phenyl-5-p-tolyl-2H-1,2,3-triazole 1-oxide (6aa): white amorphous solid; IR (KBr): 1593, 1135, 510 cm–1. 1H NMR (400 MHz, CDCl3): δ = 8.06 (d, J = 8.2 Hz, 2 H, Ar-H), 8.02 (s, 1 H, Ar-H), 7.98 (dd, J = 7.5, 1.4 Hz, 2 H, Ar-H), 7.56 (t, J = 7.5 Hz, 2H, Ar-H), 7.48 (dt, J = 7.5, 1.4 Hz, 1 H, Ar-H), 7.33 (d, J = 8.2 Hz, 2H, Ar-H), 2.43 (s, 3H, CH3). 13C NMR (100 MHz, CDCl3): δ = 139.7, 135.2, 131.1, 129.6, 129.1, 129.0, 127.1, 125.7, 123.3, 122.6, 21.4. MS (ESI): 252 (M + H+, 100). Anal. calcd for C15H13N3O: C, 71.70; H, 5.21; N, 16.72. Found C, 71.35; H, 5.46; N, 16.37.