Synlett 2015; 26(09): 1185-1190
DOI: 10.1055/s-0034-1380291
letter
© Georg Thieme Verlag Stuttgart · New York

One-Pot Synthesis of Organic Disulfides (Disulfanes) from Alkyl Halides Using Sodium Sulfide Trihydrate and Hexachloroethane or Carbon Tetrachloride in the Poly(ethylene glycol) (PEG-200)

Mohammad Abbasi*
a   Chemistry Department, Faculty of Sciences, Persian Gulf University, Bushehr 75169, Iran   Email: abbassi@pgu.ac.ir   Email: pgu.chem@gmail.com
,
Mohammad Reza Mohammadizadeh*
b   Chemistry Department, Faculty of Sciences, Persian Gulf University, Bushehr 75169, Iran   Email: mrmohamadizadeh@pgu.ac.ir
,
Hekmat Moosavi
a   Chemistry Department, Faculty of Sciences, Persian Gulf University, Bushehr 75169, Iran   Email: abbassi@pgu.ac.ir   Email: pgu.chem@gmail.com
,
Narges Saeedi
a   Chemistry Department, Faculty of Sciences, Persian Gulf University, Bushehr 75169, Iran   Email: abbassi@pgu.ac.ir   Email: pgu.chem@gmail.com
› Author Affiliations
Further Information

Publication History

Received: 02 November 2014

Accepted after revision: 11 February 2015

Publication Date:
19 March 2015 (online)


Abstract

Symmetric disulfides are produced by treating their corresponding organic halides including benzylic, allylic, primary and secondary halides with Na2S·3H2O and C2Cl6 or CCl4 in PEG-200 at room temperature in high yields.

 
  • References and Notes

  • 1 Pattenden G, Shuker A. J. Chem. Soc., Perkin Trans. 1 1992; 1215
    • 2a Inaba K. J. Biochem. 2009; 146: 591
    • 2b Wedemeyer WJ, Welker E, Narayan M, Scheraga HA. Biochemistry 2000; 39: 4207
  • 3 Lee KD, Saito G, Swanson JA. Adv. Drug Delivery Rev. 2003; 55: 199
    • 4a Ramadas K, Srinivasan N. Synth. Commun. 1995; 25: 227
    • 4b Fisher HL. Ind. Eng. Chem. 1950; 42: 1978
    • 5a Dong Y. Sensor. Actuat. B: Chem. 2005; 108: 622
    • 5b Shcherbakova I, Pozharskii AF. In Comprehensive Organic Functional Group Transformations II . Vol. 2. Katritzky AR, Taylor R, Ramsden C. Pergamon; Oxford: 2004: 210
    • 5c Bulmanb Page PC, Wilkes RD, Reynolds D. In Comprehensive Organic Functional Group Transformations . Vol. 2. Katritzky AR, Meth-Cohn O, Rees CW. Pergamon; Oxford: 1995: 177-187
    • 5d Sato R, Kimura T. In Science of Synthesis . Vol. 39. Kambe N, Drabowicz J, Molander GA. Thieme; Stuttgart, New York: 2007: 573-588 ; (also available online)
    • 5e Witt D, Klajn R, Barski P, Grzybowski BA. Curr. Org. Chem. 2004; 8: 1763
    • 6a Blanco GA, Baumgartner MT. Tetrahedron Lett. 2011; 52: 7061
    • 6b Liu Y, Zhang Y, Hu C, Wan J.-P, Wen C. RSC Adv. 2014; 4: 35528
    • 6c Taniguchi Y, Maruo M, Takaki K, Fujiwara Y. Tetrahedron Lett. 1994; 35: 7789
    • 6d Koval IV. Russ. Chem. Rev. (Engl. Transl.) 1994; 63: 735
    • 6e Shirani H, Janosik T. Synthesis 2007; 2690
    • 6f Atkinson JG, Hamel P, Girard Y. Synthesis 1988; 480
    • 7a Movassagh B, Sobhani S, Kheirdoush F, Fadaei Z. Synth. Commun. 2003; 33: 3103
    • 7b Guo W, Chen J, Wu D, Ding J, Chen F, Wu H. Tetrahedron 2009; 65: 5240
    • 7c Ranu BC, Mandal T. Can. J. Chem. 2006; 84: 762
    • 7d Devan N, Sridhar PR, Prabhu KR, Chandrasekaran S. J. Org. Chem. 2002; 67: 9417
    • 8a Movassagh B, Zakinezhad Y. Z. Naturforsch., B 2006; 61: 47
    • 8b Ranu BC, Mandal T. Synlett 2004; 1239
    • 8c Bartolozzi A, Foudoulakis HM, Cole BM. Synthesis 2008; 2023
    • 8d Prabhu KR, Sivanand PS, Chandrasekaran S. Angew. Chem. Int. Ed. 2000; 39: 4316
  • 9 Beletskaya I, Moberg C. Chem. Rev. 2006; 106: 2320
    • 10a Kodama S, Nishinaka E, Nomoto A, Sonoda M, Ogawa A. Tetrahedron Lett. 2007; 48: 6312
    • 10b Holmquist H, Carnahan J. J. Org. Chem. 1960; 25: 2240
    • 10c Nishiyama Y, Kawamatsu H, Sonoda N. J. Org. Chem. 2005; 70: 2551
    • 10d Kodama S, Nishinaka E, Nomoto A, Sonoda M, Ogawa A. Tetrahedron Lett. 2007; 48: 6312
    • 13a Wang JX, Gao L, Huang D. Synth. Commun. 2002; 32: 963
    • 13b Bandgar BP, Uppalla LS, Sadavarte VS. Tetrahedron Lett. 2001; 42: 6741
    • 13c Kiasat AR, Mokhtari B, Kazemi F, Yousefi S, Javaherian M. J. Sulfur Chem. 2007; 28: 171
    • 14a Hase TA, Perakyla H. Synth. Commun. 1982; 12: 947
    • 14b Kamyshny A, Ekeltchlk I, Gun J, Lev O. Anal. Chem. 2006; 78: 2631
    • 14c Weyerstahl P, Oldenburg T. Flavour Fragr. J. 1998; 13: 177
    • 14d Krein EB, Aizenshtat Z. J. Org. Chem. 1993; 58: 6103
    • 14e Gopalan AS, Jacobs HK. J. Chem. Soc., Perkin Trans. 1 1990; 1897
    • 14f Sonavane SU, Chidambaram M, Almog J, Sasson Y. Tetrahedron Lett. 2007; 48: 6048
    • 14g Schneider HB, Rager H. Monatsh. Chem. 1950; 81: 970
  • 15 Bandgar BP, Uppalla LS, Sadavarte VS. Tetrahedron Lett. 2001; 42: 6741
    • 16a Firouzabadi H, Iranpoor N, Abbasi M. Tetrahedron Lett. 2010; 51: 508
    • 16b Firouzabadi H, Iranpoor N, Abbasi M. Bull. Chem. Soc. Jpn. 2010; 83: 698
    • 16c Abbasi M, Mohammadizadeh MR, Taghavi ZK. J. Iran Chem. Soc. 2013; 10: 201
    • 17a Ghosh S, Easwaran KR. K, Bhattacharya S. Tetrahedron Lett. 1996; 37: 5769
    • 17b Sridhar PR, Prabhu KR, Chandrasekaran S. Eur. J. Org. Chem. 2004; 4809
    • 17c Bhar D, Chandrasekaran S. Carbohydr. Res. 1997; 301: 221
    • 17d Ilankumaran P, Prabhu KR, Chandrasekaran S. Synth. Commun. 1997; 27: 4031
  • 18 Sinha S, Ilankumaran P, Chandrasekaran S. Tetrahedron 1999; 55: 14769
  • 19 Prabhu KR, Ramesha AR, Chandrasekaran S. J. Org. Chem. 1995; 60: 7142
  • 20 Devan N, Sridhar PR, Prabhu KR, Chandrasekaran S. J. Org. Chem. 2002; 67: 9417
  • 21 Sureshkumar D, Gunasundari T, Ganesh V, Chandrasekaran S. J. Org. Chem. 2006; 72: 2106
  • 22 Distler H. Angew. Chem. Int. Ed. 1967; 6: 544
    • 23a Wang L, Li P, Zhou L. Tetrahedron Lett. 2002; 43: 8141
    • 23b Wang L, Zhang Y. Tetrahedron 1999; 55: 10695
    • 23c Li P, Wang L, Yang Y, Sun X, Wang M, Yan J. Heteroat. Chem. 2004; 15: 376
    • 23d Liu Y, Zheng H, Xu D, Xu Z, Zhang Y. Synlett 2006; 2492
  • 24 Milligan B, Swan JM. J. Chem. Soc. 1962; 2172
  • 25 General Procedure: Na2S·3H2O (0.291 g, 2.2 mmol) was added to a magnetically stirred solution of an alkyl halide (2 mmol) and C2Cl6 or CCl4 (1.5 mmol) in PEG-200 (2 mL) at r.t. The stirring was continued until the starting halide was completely consumed (30–150 min). Next, the reaction mixture was diluted with H2O (1 mL) and extracted with EtOAc–hexane (1:1; 4 × 2 mL). The organic extracts were combined, concentrated and purified by chromatography on silica gel. The desired disulfides were produced in excellent yields (Table 1). Benzyl Disulfide (1): white crystals; mp 68–70 °C [Lit.13c mp 69–70 °C]. 1H NMR (400 MHz, CDCl3): δ = 7.26–7.34 (m, 10 H), 3.61 (s, 4 H). 13C NMR (100 MHz, CDCl3): δ = 138.6, 130.7, 129.7, 128.7, 44.4. Anal. Calcd for C14H14S2: C, 68.25; H, 5.73; S, 26.02. Found: C, 68.12; H, 5.69; S, 26.19. Bis(2-methylbenzyl) Disulfide (4): white crystals; mp 71–73 °C. 1H NMR (400 MHz, CDCl3): δ = 7.13–7.21 (m, 8 H), 3.67 (s, 4 H), 2.38 (s, 6 H). 13C NMR (100 MHz, CDCl3): δ = 135.8, 134.0, 129.5, 129.4, 126.7, 124.9, 40.5, 18.2. Anal. Calcd for C16H18S2: C, 70.02; H, 6.61; S, 23.37. Found: C, 69.94; H, 6.50; S, 23.56. Bis(3-methylbenzyl) Disulfide (5): yellow oil. 1H NMR (400 MHz, CDCl3): δ = 7.20–7.26 (m, 2 H), 7.04–7.14 (m, 6 H), 3.60 (s, 4 H), 2.36 (s, 6 H). 13C NMR (100 MHz, CDCl3): δ = 137.1, 136.2, 129.1, 127.4, 127.2, 125.4, 42.3, 20.4. Anal. Calcd for C16H18S2: C, 70.02; H, 6.61; S, 23.37. Found: C, 70.16; H, 6.52; S, 23.32. Bis(4-methylbenzyl) Disulfide (6): colorless oil. 1H NMR (250 MHz, CDCl3): δ = 7.05–7.33 (m, 8 H), 3.71 (s, 4 H), 2.21 (s, 6 H). 13C NMR (62.5 MHz, CDCl3): δ = 137.6, 134.8, 129.8, 129.1, 43.1, 21.4. Anal. Calcd for C16H18S2: C, 70.02; H, 6.61; S, 23.37. Found: C, 70.05; H, 6.49; S, 23.46. Bis(2-chlorobenzyl) disulfide (8): yellow crystals; mp70–72 °C [Lit.27 mp 74 °C]. 1H NMR (400 MHz, CDCl3): δ = 7.19–730 (m, 2 H), 7.11–7.19 (m, 6 H), 3.70 (s, 4 H). 13C NMR (100 MHz, CDCl3): δ = 133.9, 133.1, 130.5, 128.8, 127.9, 125.7, 40.0. Anal. Calcd for C14H12Cl2S2: C, 53.34; H, 3.84; S, 20.34. Found: C, 53.21; H, 3.77; S, 20.42. n-Decyl Disulfide (13): colorless oil. 1H NMR (250 MHz, CDCl3): δ = 2.64 (t, J = 7.3 Hz, 4 H), 1.59–1.71 (m, 4 H), 1.21–1.35 (m, 28 H), 0.82 (t, J = 6.2 Hz, 6 H). 13C NMR (62.5 MHz, CDCl3): δ = 39.2, 31.8, 29.6, 29.5, 29.3, 29.2, 29.0, 28.5, 22.8, 14.2. Anal. Calcd for C20H42S2: C, 69.29; H, 12.21; S, 18.50. Found: C, 69.16; H, 12.26; S, 18.58. Cyclopentyl Disulfide (18): colorless oil. 1H NMR (250 MHz, CDCl3): δ = 3.39–3.45 (m, 2 H), 1.94–1.97 (m, 4 H), 1.51–1.69 (m, 12 H). 13C NMR (62.5 MHz, CDCl3): δ = 50.7, 32.9, 24.7. Anal. Calcd for C10H18S2: C, 59.35; H, 8.97; S, 31.68. Found: C, 59.51; H, 8.99; S, 31.50. Cyclohexyl Disulfide (19): colorless oil. 1H NMR (250 MHz, CDCl3): δ = 2.64–2.73 (m, 2 H), 1.99–2.06 (m, 4 H), 1.70–1.82 (m, 4 H), 1.52–1.64 (m, 2 H), 1.17–1.31 (m, 10 H). 13C NMR (62.5 MHz, CDCl3): δ = 50.1, 32.7, 26.1, 25.7. Anal. Calcd for C12H22S2: C, 62.55; H, 9.62; S, 27.83. Found: C, 62.40; H, 9.75; S, 27.85. Bis(3-hydroxypropyl)disulfide (21): colorless oil. 1H NMR (400 MHz, CDCl3): δ = 3.78 (t, J = 6.0 Hz, 4 H), 3.02–3.14 (m, 4 H), 2.82 (br s, 2 H), 2.00–2.08 (m, 4 H). 13C NMR (100 MHz, CDCl3): δ = 60.9, 35.2, 31.5. Anal. Calcd for C6H14O2S2: C, 39.53; H, 7.74; S, 35.17. Found: C, 39.72; H, 7.89; S, 34.98.
  • 26 Typical Scale-Up Procedure for the Preparation of n-Octyl Disulfide: Na2S·3H2O (4.365g, 33 mmol) was added to a magnetically stirred solution of n-octyl bromide (5.182 mL, 30 mmol) and CCl4 (2.25 mL, 22.5 mmol) in PEG-200 (30 mL) at r.t. The starting halide was completely consumed within 90 min. Then, the mixture was diluted with H2O (15 mL) and extracted with EtOAc–hexane (1:1; 4 × 15 mL). The upper layers were decanted, combined, and concentrated. The crude product was purified by silica gel chromatography using n-hexane as eluent to provide octyl disulfide in 88% yield (3.836 g) yield. n-Octyl Disulfide (12): colorless oil. 1H NMR (250 MHz, CDCl3): δ = 2.64 (t, J = 7.3 Hz, 4 H), 1.53–1.68 (m, 4 H), 1.27–1.36 (m, 20 H), 0.81 (t, J = 6.2 Hz, 6 H); 13C NMR (62.5 MHz, CDCl3): δ = 39.2, 31.7, 29.4, 29.2, 29.1, 28.6, 22.7, 14.1. Anal. Calcd for C16H34S2: C, 66.14; H, 11.79; S, 22.07. Found: C, 65.99; H, 11.81; S, 22.20.
  • 27 Srivastava SK, Rastogi R, Rajaram P, Butcher RJ, Jasinski JP. Phosphorus, Sulfur, Silicon Relat. Elem. 2010; 185: 455