Synlett 2015; 26(14): 2033-2036
DOI: 10.1055/s-0034-1380440
letter
© Georg Thieme Verlag Stuttgart · New York

Palladium(II)-Catalyzed C–H Acylation with Arylglycine Derivatives

Weizheng Fan
School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, P. R. of China   Email: fengbainian@jiangnan.edu.cn
,
Jiapeng Su
School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, P. R. of China   Email: fengbainian@jiangnan.edu.cn
,
Bainian Feng*
School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, P. R. of China   Email: fengbainian@jiangnan.edu.cn
› Author Affiliations
Further Information

Publication History

Received; 14 April 2015

Accepted after revision; 17 May 2015

Publication Date:
25 June 2015 (online)


Abstract

A novel palladium(II)-catalyzed ortho acylation of arenes with arylglycines in the presence of Cu(OAc)2 and K2S2O8 to afford the benzophenones was developed. This direct C–H acylation is suitable for a broad range of substrates. The control experiments suggested a possible oxidative addition mechanism.

Supporting Information

 
  • References and Notes


    • For recent reviews, see:
    • 1a Mousseau JJ, Charette AB. Acc. Chem. Res. 2013; 46: 412
    • 1b Kuhl N, Hopkinson MN, Wencel-Delord J, Glorius F. Angew. Chem. Int. Ed. 2012; 51: 10236
    • 1c Bras JL, Muzart J. Chem. Rev. 2011; 111: 1170
    • 1d McMurray L, O’Hara F, Gaunt MJ. Chem. Soc. Rev. 2011; 40: 1885
    • 1e Baudoin O. Chem. Soc. Rev. 2011; 40: 4902
    • 1f Wencel-Delord J, Dröge T, Kiu F, Glorius F. Chem. Soc. Rev. 2011; 40: 4740
    • 1g Ackermann L. Chem. Rev. 2011; 111: 1315
    • 1h Cho SH, Kim JY, Kwak J, Chang S. Chem. Soc. Rev. 2011; 40: 5068
    • 1i Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
    • 1j Colby DA, Bergman RG, Ellman JA. Chem. Rev. 2010; 110: 624
    • 1k Chen X, Engle KM, Wang D.-H, Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 5094
    • 1l Li B.-J, Yang S.-D, Shi Z.-J. Synlett 2008; 949
    • 1m Kakiuchi F, Kochi T. Synthesis 2008; 3013
    • 2a McGrath NA, Brichacek M, Njardarson JT. J. Chem. Educ. 2010; 87: 1348
    • 2b Gmouh S, Yang H, Vaultier M. Org. Lett. 2003; 5: 2219
    • 2c Harrington PJ, Lodewijk E. Org. Process Res. Dev. 1997; 1: 72
    • 2d Harvey G, Mader G. Collect. Czech. Chem. Commun. 1992; 57: 862
    • 2e Sheldon RA. Chem. Ind. 1992; 903
    • 2f Furniss BS, Hannaford AJ, Smith PW. G, Tatchell R. Vogel’s Textbook of Practical Organic Chemistry . Addison Wesley Longman; England: 1989. 5th ed. 1006
    • 3a Heaney H In Comprehensive Organic Synthesis . Vol. 2. Trost BM, Fleming I. Pergamon Press; Oxford: 1991: 733
    • 3b Olah GA. Friedel–Crafts Chemistry . Wiley; New York: 1973
    • 3c Gore PH. Aromatic Ketone Synthesis . In Friedel–Crafts and Related Reactions . Olah GA. John Wiley; London: 1964. Part 1, Vol. 3 1
    • 3d Gore PH. Chem. Rev. 1955; 55: 229

      Selected references, see:
    • 4a Sharghi H, Jokar M, Doroodmand MM, Khalifeh R. Adv. Synth. Catal. 2010; 352: 3031
    • 4b de Noronha RG, Fernandes AC, Romao CC. Tetrahedron Lett. 2009; 50: 1407
    • 4c Nishimoto Y, Babu SA, Yasuda M, Baba A. J. Org. Chem. 2008; 73: 9465
    • 4d Gopalakrishnan M, Sureshkumar P, Kanagarajan V, Thanusu J. Catal. Commun. 2005; 6: 753
    • 4e Hosseini Sarvari M, Sharghi H. J. Org. Chem. 2004; 69: 6953
    • 4f Bartoli G, Bosco M, Marcantoni E, Massaceri M, Rinaldi S, Sambri L. Tetrahedron Lett. 2002; 43: 6331
    • 4g Reetz MT, Giebel D. Angew. Chem. Int. Ed. 2000; 39: 2498

      For selected examples of C–H acylation using aldehydes, see:
    • 5a Jia X, Zhang S, Wang W, Luo F, Cheng J. Org. Lett. 2009; 11: 3120
    • 5b Park J, Park E, Kim A, Lee Y, Chi K.-W, Kwak JH, Jung YH, Kim IS. Org. Lett. 2011; 13: 4390
    • 5c Sharma S, Park E, Park J, Kim IS. Org. Lett. 2012; 14: 906
    • 5d Sharma S, Park J, Park E, Kim A, Kim M, Kwak JH, Jung YH, Kim IS. Adv. Synth. Catal. 2013; 355: 332
    • 5e Chan C.-W, Zhou Z, Chan AS. C, Yu W.-Y. Org. Lett. 2010; 12: 3926
    • 5f Yang Y, Zhou B, Li Y. Adv. Synth. Catal. 2012; 354: 2916
    • 5g Sharma S, Kim A, Park J, Kim M, Kwak JH, Jung YH, Park JS, Kim IS. Org. Biomol. Chem. 2013; 11: 7869
    • 5h Baslé O, Bidange J, Shuai Q, Li C.-J. Adv. Synth. Catal. 2010; 352: 1145
    • 5i Shin Y, Sharma S, Mishra NK, Han S, Paek J, Oh H, Ha J, Yoo H, Jung YH, Kim IS. Adv. Synth. Catal. 2015; 357: 594

      For selected examples of C–H acylation using alcohols, see:
    • 6a Xiao F, Shuai Q, Zhao F, Baslé O, Deng G, Li C.-J. Org. Lett. 2011; 13: 1614
    • 6b Park J, Kim A, Sharma S, Kim M, Park E, Jeon Y, Lee Y, Kwak JH, Jung YH, Kim IS. Org. Biomol. Chem. 2013; 11: 2766
    • 6c Kim M, Sharma S, Park J, Kim M, Choi Y, Jeon Y, Kwak JH, Kim IS. Tetrahedron 2013; 69: 6552
    • 6d Sharma S, Kim M, Park J, Kim M, Kwak JH, Jung YH, Oh JS, Lee Y, Kim IS. Eur. J. Org. Chem. 2013; 6656

      For selected examples of C–H acylation using α-oxocarboxylic acids, see:
    • 7a Fang P, Li M, Ge H. J. Am. Chem. Soc. 2010; 132: 11898
    • 7b Li M, Ge H. Org. Lett. 2010; 12: 3464
    • 7c Wang H, Guo L.-N, Duan X.-H. Org. Lett. 2012; 14: 4358
    • 7d Kim M, Park J, Sharma S, Kim A, Park E, Kwak JH, Jung YH, Kim IS. Chem. Commun. 2013; 49: 925
    • 7e Park J, Kim M, Sharma S, Park E, Kim A, Lee SH, Kwak JH, Jung YH, Kim IS. Chem. Commun. 2013; 49: 1654
    • 7f Sharma S, Kim A, Park E, Park J, Kim M, Kwak JH, Lee SH, Jung YH, Kim IS. Adv. Synth. Catal. 2013; 355: 667
    • 7g Yu L, Li P, Wang L. Chem. Commun. 2013; 49: 2368
    • 7h Li H, Li P, Zhao Q, Wang L. Chem. Commun. 2013; 49: 9170
    • 7i Miao J, Ge H. Org. Lett. 2013; 15: 2930
    • 7j Kim M, Mishra NK, Park J, Han S, Shin Y, Sharma S, Lee Y, Lee E.-K, Kwak JH, Kim IS. Chem. Commun. 2014; 50: 14249
    • 8a Guin S, Rout SK, Banerjee A, Nandi S, Patel BK. Org. Lett. 2012; 14: 5294
    • 8b Wu Y, Choy PY, Mao F, Kwong FY. Chem. Commun. 2013; 49: 689
  • 9 Zhou W, Li H, Wang L. Org. Lett. 2012; 14: 4594
  • 10 Lu J, Zhang H, Chen X, Liu H, Jiang Y, Fu H. Adv. Synth. Catal. 2013; 355: 529
  • 11 Zhang Q, Yang F, Wu Y. Chem. Commun. 2013; 49: 6837
  • 12 Han S, Sharma S, Park J, Kim M, Shin Y, Mishra NK, Bae JJ, Kwak JH, Jung YH, Kim IS. J. Org. Chem. 2014; 79: 275
  • 13 Tlili A, Schranck J, Pospech J, Neumann H, Beller M. Angew. Chem. Int. Ed. 2013; 52: 6293
  • 14 Wang R, An C.-H, Li Y, Zhao Y, Wang T, Li A. Tetrahedron Lett. 2015; 56: 2077
    • 15a Ditrich K. Science of Synthesis . Vol. 25. Thieme; Stuttgart: 2007: 523
    • 15b Srogl J, Voltrova S. Org. Lett. 2009; 11: 843
    • 16a Murai S, Kakiuchi F, Sekine S, Tanaka Y, Kamatani A, Sonoda M, Chatani N. Nature (London, U.K.) 1993; 366: 529
    • 16b Dupont J, Consorti CS, Spencer J. Chem. Rev. 2005; 105: 2527
    • 17a Arnold PL, Sanford MS, Pearson SM. J. Am. Chem. Soc. 2009; 131: 13912
    • 17b Baslé O, Bidange J, Shuai Q, Li C.-J. Adv. Synth. Catal. 2010; 352: 1145
    • 17c Hickman AJ, Sanford MS. Nature (London, U.K.) 2012; 484: 177
    • 17d Muñiz K. Angew. Chem. Int. Ed. 2009; 48: 9412
  • 18 Synthesis of 3a–v A mixture of 1 (0.5 mmol), 2 (0.6 mmol), DMSO (5% H2O aq, 5 mL), Pd(OAc)2 (5 mol%), Cu(OAc)2 (10 mol%), and K2S2O8 (2 equiv) was stirred at 120 °C under Ar atmosphere for 24 h. The reaction mixture was washed with H2O, and the aqueous phase was extracted with EtOAc (3×). The combined organic layer was washed with brine, dried over Na2SO4, and evaporated under reduced pressure. The crude product was purified by silica gel column chromatography to give the corresponding products (3ad,7b 3fk,7b 3ns 7b). Compound 3e: yield 15%, white solid. 1H NMR (500 MHz, CDCl3): δ = 8.32 (d, J = 4.6 Hz, 1 H), 7.68 (m, 2 H), 7.52 (m, 2 H), 7.50 (m, 1 H), 7.41 (t, J = 7.2 Hz, 1 H), 7.25 (m, 2 H), 7.18 (m, 2 H), 7.0 (m, 1 H), 1.13 (s, 9 H). 13C NMR (125 MHz, CDCl3): δ = 197.2, 158.0, 155.2, 148.5, 140.2, 136.8, 135.9, 131.5, 129.9, 129.3, 128.4, 127.8, 126,9, 121.3, 119.5, 114.1, 34.5, 15.8. HRMS: m/z calcd for C22H21NO: 315.1623; found: 315.1626.