Synlett 2015; 26(11): 1490-1495
DOI: 10.1055/s-0034-1380765
letter
© Georg Thieme Verlag Stuttgart · New York

Chiral Cyclopentadienyl Ligands Enable a Rhodium(III)-Catalyzed Enantioselective Access to Hydroxychromanes and Phthalides

Baihua Ye
Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), BCH 4305, 1015 Lausanne, Switzerland   Email: nicolai.cramer@epfl.ch
,
Nicolai Cramer*
Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), BCH 4305, 1015 Lausanne, Switzerland   Email: nicolai.cramer@epfl.ch
› Author Affiliations
Further Information

Publication History

Received: 26 March 2015

Accepted after revision: 22 April 2015

Publication Date:
11 May 2015 (online)


Dedicated to K. Peter C. Vollhardt for his pioneering contributions to chiral cyclopentadienyl ligands.

Abstract

The demand for efficient chiral cyclopentadienyl ligands (Cpx) has increased significantly in recent years, partly because Cp*Rh(III) species have been developed as powerful catalysts for directed C–H functionalization reactions. However, a lack of suitable Cpx ligands has hampered the development of the corresponding enantioselective processes. We report expansions of the libraries of two generations of Cpx ligands and their corresponding rhodium(I) complexes. The potential of the rhodium complexes as catalysts was evaluated in enantioselective C–H functionalizations involving cyclizations across tethered aldehydes. The mild reaction conditions permit the syntheses of hydroxychromanes and phthalides in good yields and high enantioselectivities.

Supporting Information

 
  • References and Notes

    • 1a Hartwig J. Organotransition Metal Chemistry: From Bonding to Catalysis. University Science Books; Sausalito: 2010
    • 1b Crabtree RH. The Organometallic Chemistry of the Transition Metals. 3rd ed,; Wiley; New York: 2001

      For selected reviews on Cp*Rh(III)-catalyzed C–H functionalizations, see:
    • 2a Kuhl N, Schröder N, Glorius F. Adv. Synth. Catal. 2014; 356: 1443
    • 2b Zhang X.-S, Chen K, Shi Z.-J. Chem. Sci. 2014; 5: 2146
    • 2c Song G, Wang F, Li X. Chem. Soc. Rev. 2012; 41: 3651
    • 2d Patureau FW, Wencel-Delord J, Glorius F. Aldrichimica Acta 2012; 45: 31
    • 2e Satoh T, Miura M. Chem. Eur. J. 2010; 16: 11212
    • 3a Leblanc JC, Moise C. J. Organomet. Chem. 1976; 120: 65
    • 3b Leblanc JC, Moise C, Tirouflet J. J. Am. Chem. Soc. 1975; 97: 6272
  • 4 Cesarotti E, Kagan HB, Goddard R, Krüger C. J. Organomet. Chem. 1978; 162: 297
  • 5 Halterman RL, Vollhardt KP. C. Tetrahedron Lett. 1986; 27: 1461
  • 6 Colletti SL, Halterman RL. Tetrahedron Lett. 1989; 30: 3513
  • 7 Halterman RL. Chem. Rev. 1992; 92: 965

    • For selected examples, see:
    • 8a Gutnov A, Heller B, Fischer C, Drexler H.-J, Spannenberg A, Sundermann B, Sundermann C. Angew. Chem. Int. Ed. 2004; 43: 3795
    • 8b Gutnov A, Heller B, Drexler H.-J, Spannenberg A, Oehme G. Organometallics 2003; 22: 1550
    • 8c Li Z, Vasella A. Helv. Chim. Acta 1996; 79: 2201
    • 8d Erker G, Schamberger J, van der Zeijden AA. H, Dehnicke S, Krüger C, Goddard R, Nolte M. J. Organomet. Chem. 1993; 459: 107
  • 9 Hyster TK, Knörr L, Ward TR, Rovis T. Science 2012; 338: 500
  • 10 Ye B, Cramer N. Science 2012; 338: 504
  • 11 Ye B, Cramer N. J. Am. Chem. Soc. 2013; 135: 636
  • 13 Song G, , W. W. N. O Hou Z. J. Am. Chem. Soc. 2014; 136: 12209
    • 14a Li W, Zhang Z, Xiao D, Zhang X. J. Org. Chem. 2000; 65: 3489
    • 14b See the Supporting Information for the preparation of the isobutyl-substituted cyclic sulfate

      For selected examples, see:
    • 15a Ueura K, Satoh T, Miura M. Org. Lett. 2007; 9: 1407
    • 15b Rakshit S, Grohmann C, Besset T, Glorius F. J. Am. Chem. Soc. 2011; 133: 2350
    • 15c Guimond N, Gorelsky SI, Fagnou K. J. Am. Chem. Soc. 2011; 133: 6449
    • 15d Zeng R, Fu C, Ma S. J. Am. Chem. Soc. 2012; 134: 9597

      For selected early examples, see:
    • 16a Davis TA, Hyster TK, Rovis T. Angew. Chem. Int. Ed. 2013; 52: 14181
    • 16b Shi Z, Arapinis-Boultadakis M, Koester DC, Glorius F. Chem. Commun. 2014; 50: 2650
    • 17a Lian Y, Bergman RG, Ellman JA. Chem. Sci. 2012; 3: 3088
    • 17b Li Y, Zhang X.-S, Chen K, He K.-H, Pan F, Li B.-J, Shi Z.-J. Org. Lett. 2012; 14: 636
    • 17c Yang L, Correia CA, Li C.-J. Adv. Synth. Catal. 2011; 353: 1269
    • 18a Pedroni J, Boghi M, Saget T, Cramer N. Angew. Chem. Int. Ed. 2014; 53: 9064
    • 18b Tran DN, Cramer N. Angew. Chem. Int. Ed. 2013; 52: 10630
    • 18c Saget T, Cramer N. Angew. Chem. Int. Ed. 2013; 52: 7865
    • 18d Saget T, Cramer N. Angew. Chem. Int. Ed. 2012; 51: 12842
    • 18e Donets PA, Cramer N. J. Am. Chem. Soc. 2013; 135: 11772
    • 18f Saget T, Lémouzy S, Cramer N. Angew. Chem. Int. Ed. 2012; 51: 2238
    • 18g Tran DN, Cramer N. Angew. Chem. Int. Ed. 2011; 50: 11098
    • 19a Beck JJ, Chou S.-C. J. Nat. Prod. 2007; 70: 891
    • 19b Lin G, Chan SS.-K, Chung H.-S, Li S.-L. Stud. Nat. Prod. Chem. 2005; 32: 611
  • 20 (4S)-4-Hydroxy-N-isopropoxychromane-5-carboxamide (8b): Typical ProcedureA solution of catalyst 2c (3.10 mg, 5.00 µmol) and (BzO)2 (1.20 mg, 5.00 µmol) in anhyd DCE (1.0 mL) was stirred for 15 min at 23 °C and then transferred to a vial containing 7b (26.0 mg, 0.10 mmol). The resulting solution was stirred at 23 °C for 14 h. Volatiles were removed under reduced pressure and the residue was loaded onto a silica gel column and subjected to gradient elution with hexane–EtOAc (5:1 to 1:1) to give a colorless film; yield: 21.0 mg (80%; 92:8 er); [α]D 20 –123 (c 1.0, CH2Cl2); Rf = 0.30 (hexane–EtOAc, 1:1); IR (ATR): 3198, 2976, 2932, 2886, 1638, 1592, 1515, 1476, 1449, 1406, 1375, 1354, 1291, 1250, 1214, 1181, 1158, 1146, 1112, 1081, 1046, 1022, 980, 950, 906, 890, 840, 819, 803, 786, 760 cm–1; 1H NMR (400 MHz, acetone-d 6): δ = 10.66 (s, 1 H), 7.26–7.19 (m, 1 H), 7.08 (dd, J = 7.4, 1.2 Hz, 1 H), 6.95 (dd, J = 8.3, 1.2 Hz, 1 H), 4.71 (t, J = 3.1 Hz, 1 H), 4.35–4.18 (m, 3 H), 2.02 (q, J = 2.5 Hz, 1 H), 2.00 – 1.91 (m, 1 H), 1.29 (d, J = 6.2 Hz, 3 H), 1.26 (d, J = 6.2 Hz, 3 H); 13C NMR (100 MHz, acetone-d 6): δ = 167.5, 155.0, 135.2, 128.7, 124.4, 120.0, 119.7, 77.4, 61.2, 59.7, 20.2, 20.1; HRMS (ESI): m/z [M + H]+ calcd for C13H18NO4: 252.1230; found: 252.1230; HPLC: Chiralpak IC (4.6 × 250 mm); 20% iPrOH–hexane (1.0 mL/min); 254 nm; tr (minor) = 17.7 min, tr (major) = 15.4 min; 92:8 er.
  • 21 Crystallographic data for compound 9f have been deposited with the accession number CCDC 1056306 and can be obtained free of charge from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44(1223)336033; E-mail: deposit@ccdc.cam.ac.uk; Web site: www.ccdc.cam.ac.uk/conts/retrieving.html.